A367598 Record high-points in A367356.
17, 164, 490, 1472, 39819, 119228, 3225387, 9657464, 261256395, 782254580, 21161768043
Offset: 1
Extensions
a(7)-a(11) from Michael S. Branicky, Nov 27 2023
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
# Comma Successor in Maple in base "bas", from N. J. A. Sloane, Dec 06 2023 bas := 3; Ldigit:=proc(n) local v; v:=convert(n, base, bas); v[-1]; end; # Returns leading digit # Return comma-successor to a or -1 if no successor exists commsucc := proc(a) local f,i,d; f := (a mod bas); d:=bas*f; for i from 1 to bas-1 do d := d+1; if Ldigit(a+d) = i then return(a+d); fi; od: return(-1); end; a:=[1]; s:=1; for n from 1 to 16 do s:=commsucc(s); a:=[op(a),s]; od: a;
from sympy.ntheory.factor_ import digits def a(n): b = n + 3*(n%3) return next((b+y for y in [1, 2] if digits(b+y, 3)[1] == y), -1) print([a(n) for n in range(1, 82)]) # Michael S. Branicky, Dec 11 2023
from sympy.ntheory.factor_ import digits def a(n): b = n + 3*(n%3) return next((int("".join(map(str, digits(b+y-n, 3)[1:]))) for y in [1, 2] if digits(b+y, 3)[1] == y), -1) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Dec 11 2023
from sympy.ntheory.factor_ import digits def a(n): b = n + 3*(n%3) return next((b+y-n for y in [1, 2] if digits(b+y, 3)[1] == y), -1) print([a(n) for n in range(1, 101)]) # Michael S. Branicky, Dec 11 2023
from sympy.ntheory.factor_ import digits def a(n): b = n + 3*(n%3) return next((int("".join(map(str, d3))) for y in [1, 2] if (d3:=digits(b+y, 3)[1:])[0] == y), -1) print([a(n) for n in range(1, 61)]) # Michael S. Branicky, Dec 11 2023
from sympy.ntheory.factor_ import digits def a(k, base=3): m = k + base*(k%base) return len([m+y for y in range(1, base) if digits(m+y, base)[1] == y]) print([a(n) for n in range(1, 96)]) # Michael S. Branicky, Dec 23 2023
Comments