A367370 a(k) is the number of different widths patterns in the symmetric representation of sigma for numbers having k odd divisors.
1, 2, 3, 6, 5, 16, 7, 40
Offset: 1
Examples
In the irregular triangle below, row k lists the count and the first occurrences of successive instantiations of the distinct width patterns in the symmetric representation of sigma for numbers with k odd divisors. # div |count| first occurrence of distinct width patterns | | 1 2 3 4 5 6 7 .. 11 .. 16 .. 40 ----------------------------------------------------------------------- 1 | 1 | 1 . . . 2 | 2 | 3 6 . . . 3 | 3 | 9 18 72 . . . 4 | 6 | 15 21 30 60 78 120 . . . 5 | 5 | 81 162 648 1296 5184 . . . 6 | 16 | 45 63 75 90 147 150 180 ... 27744 . 7 | 7 | 729 1458 5832 11664 46656 93312 373248 . . 8 | 40 | 105 135 165 189 210 231 357 ... 203808 9 | 28? | 225 441 450 882 900 1225 1800 ... 10 | >=47| 405 567 810 1134 1377 1539 1620 ... 11 | 11 |59049 ... 1934917632 The complete sequence of first occurrences of the 11 width patterns for numbers with 11 odd divisors is: 59049, 118098, 472392, 944784, 3779136, 7558272, 30233088, 120932352, 241864704, 967458816, 1934917632. The column labeled '1' of least occurrences of a width pattern of length 2k-1 is sequence A038547: least number with exactly k odd divisors.
Crossrefs
Programs
-
Mathematica
t249223[n_] := FoldList[#1+(-1)^(#2+1)KroneckerDelta[Mod[n-#2 (#2+1)/2, #2]]&, 1, Range[2, Floor[(Sqrt[8n+1]-1)/2]]] (* row n in triangle of A249223 *) t262045[n_] := Join[t249223[n], Reverse[t249223[n]]] (* row n in triangle of A262045 *) widthPattern[n_] := Map[First, Split[t262045[n]]] nOddDivs[n_] := Length[Divisors[NestWhile[#/2&, n, EvenQ[#]&]]] count[n_, k_] := Length[Union[Map[widthPattern, Select[Range[n], nOddDivs[#]==k&]]]] (* count of distinct width patterns for numbers with k odd divisors in the range 1 .. n *)
Comments