A367402 Number of integer partitions of n whose semi-sums cover an interval of positive integers.
1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 26, 31, 38, 44, 58, 64, 81, 95, 116, 137, 166, 192, 233, 278, 330, 385, 459, 542, 636, 759, 879, 1038, 1211, 1418, 1656, 1942, 2242, 2618, 3029, 3535, 4060, 4735, 5429, 6299, 7231, 8346, 9556, 11031, 12593, 14482, 16525
Offset: 0
Keywords
Examples
The partition y = (3,2,1,1) has semi-sums {2,3,4,5}, which is an interval, so y is counted under a(7). The a(1) = 1 through a(8) = 13 partitions: (1) (2) (3) (4) (5) (6) (7) (8) (11) (21) (22) (32) (33) (43) (44) (111) (31) (41) (42) (52) (53) (211) (221) (51) (61) (62) (1111) (2111) (222) (322) (71) (11111) (321) (2221) (332) (2211) (3211) (2222) (21111) (22111) (3221) (111111) (211111) (22211) (1111111) (32111) (221111) (2111111) (11111111)
Crossrefs
Programs
-
Mathematica
Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]==Union[d])&]], {n,0,15}]
Comments