cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A367394 Number of integer partitions of n whose length is a semi-sum of the parts.

Original entry on oeis.org

0, 0, 1, 0, 1, 1, 3, 3, 6, 7, 14, 15, 25, 30, 46, 54, 80, 97, 139, 169, 229, 282, 382, 461, 607, 746, 962, 1173, 1499, 1817, 2302, 2787, 3467, 4201, 5216, 6260, 7702, 9261, 11294, 13524, 16418, 19572, 23658, 28141, 33756, 40081, 47949, 56662, 67493, 79639
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (3,3,2,1) we have 4 = 3 + 1, so y is counted under a(9).
The a(2) = 1 through a(10) = 14 partitions:
  (11)  .  (211)  (221)  (321)   (421)   (521)    (621)    (721)
                         (2211)  (2221)  (2222)   (3222)   (3322)
                         (3111)  (3211)  (3221)   (3321)   (3331)
                                         (3311)   (4221)   (4222)
                                         (32111)  (4311)   (4321)
                                         (41111)  (32211)  (5221)
                                                  (42111)  (5311)
                                                           (32221)
                                                           (33211)
                                                           (42211)
                                                           (43111)
                                                           (331111)
                                                           (421111)
                                                           (511111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237668 counts sum-full partitions, sum-free A237667.
A366738 counts semi-sums of partitions, strict A366741.
Triangles:
A008284 counts partitions by length, strict A008289.
A365543 counts partitions with a subset-sum k, strict A365661.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#,{2}], Length[#]]&]], {n,0,10}]

A367398 Number of integer partitions of n whose length is not a semi-sum of the parts.

Original entry on oeis.org

1, 1, 1, 3, 4, 6, 8, 12, 16, 23, 28, 41, 52, 71, 89, 122, 151, 200, 246, 321, 398, 510, 620, 794, 968, 1212, 1474, 1837, 2219, 2748, 3302, 4055, 4882, 5942, 7094, 8623, 10275, 12376, 14721, 17661, 20920, 25011, 29516, 35120, 41419, 49053, 57609, 68092, 79780
Offset: 0

Views

Author

Gus Wiseman, Nov 19 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			For the partition y = (4,3,1) we have semi-sums {4,5,7}, which do not include 3 (the length of y), so y is counted under a(8).
The a(1) = 1 through a(8) = 16 partitions:
  (1)  (2)  (3)    (4)     (5)      (6)       (7)        (8)
            (21)   (22)    (32)     (33)      (43)       (44)
            (111)  (31)    (41)     (42)      (52)       (53)
                   (1111)  (311)    (51)      (61)       (62)
                           (2111)   (222)     (322)      (71)
                           (11111)  (411)     (331)      (332)
                                    (21111)   (511)      (422)
                                    (111111)  (4111)     (431)
                                              (22111)    (611)
                                              (31111)    (4211)
                                              (211111)   (5111)
                                              (1111111)  (22211)
                                                         (221111)
                                                         (311111)
                                                         (2111111)
                                                         (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum, linear combination, or semi-sum of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free semi-full semi-free
-----------------------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A236912 counts partitions containing no semi-sum, ranks A364461.
A237113 counts partitions containing a semi-sum, ranks A364462.
A237667 counts sum-free partitions, sum-full A237668.
A366738 counts semi-sums of partitions, strict A366741.
A367402 counts partitions with covering semi-sums, complement A367403.
Triangles:
A008284 counts partitions by length, strict A008289.
A365541 counts subsets with a semi-sum k.
A367404 counts partitions with a semi-sum k, strict A367405.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],FreeQ[Total/@Subsets[#,{2}],Length[#]]&]],{n,0,10}]

A367403 Number of integer partitions of n whose semi-sums do not cover an interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 2, 5, 9, 13, 22, 30, 46, 63, 91, 118, 167, 216, 290, 374, 490, 626, 810, 1022, 1297, 1628, 2051, 2551, 3176, 3929, 4845, 5963, 7311, 8932, 10892, 13227, 16035, 19395, 23397, 28156, 33803, 40523, 48439, 57832, 68876, 81903, 97212, 115198
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The a(0) = 0 through a(9) = 13 partitions:
  .  .  .  .  .  (311)  (411)   (331)    (422)     (441)
                        (3111)  (421)    (431)     (522)
                                (511)    (521)     (531)
                                (4111)   (611)     (621)
                                (31111)  (3311)    (711)
                                         (4211)    (4311)
                                         (5111)    (5211)
                                         (41111)   (6111)
                                         (311111)  (33111)
                                                   (42111)
                                                   (51111)
                                                   (411111)
                                                   (3111111)
		

Crossrefs

The complement for parts instead of sums is A034296, ranks A073491.
The complement for all sub-sums is A126796, ranks A325781, strict A188431.
For parts instead of sums we have A239955, ranks A073492.
For all subset-sums we have A365924, ranks A365830, strict A365831.
The complement is counted by A367402.
The strict case is A367411, complement A367410.
A000009 counts partitions covering an initial interval, ranks A055932.
A086971 counts semi-sums of prime indices.
A261036 counts complete partitions by maximum.
A276024 counts positive subset-sums of partitions, strict A284640.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], (d=Total/@Subsets[#,{2}];If[d=={}, {}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,15}]

A367410 Number of strict integer partitions of n whose semi-sums cover an interval of positive integers.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 6, 6, 7, 7, 8, 8, 11, 9, 11, 11, 12, 12, 15, 14, 15, 16, 16, 16, 19, 18, 19, 22, 21, 21, 24, 22, 25, 26, 26, 26, 30, 28, 29, 32, 31, 32, 37, 35, 36, 38, 39, 39, 43, 42, 43, 47, 46, 49, 51, 52, 51, 58
Offset: 0

Views

Author

Gus Wiseman, Nov 18 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is not counted under a(7).
The a(1) = 1 through a(9) = 6 partitions:
  (1)  (2)  (3)    (4)    (5)    (6)      (7)    (8)    (9)
            (2,1)  (3,1)  (3,2)  (4,2)    (4,3)  (5,3)  (5,4)
                          (4,1)  (5,1)    (5,2)  (6,2)  (6,3)
                                 (3,2,1)  (6,1)  (7,1)  (7,2)
                                                        (8,1)
                                                        (4,3,2)
		

Crossrefs

For parts instead of sums we have A001227:
- non-strict A034296, ranks A073491
- complement A238007
- non-strict complement A239955, ranks A073492
The non-binary version is A188431:
- non-strict A126796, ranks A325781
- complement A365831
- non-strict complement A365924, ranks A365830
The non-strict version is A367402.
The non-strict complement is A367403.
The complement is counted by A367411.
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#,{2}]; If[d=={},{}, Range[Min@@d, Max@@d]]==Union[d])&]], {n,0,30}]

A367411 Number of strict integer partitions of n whose semi-sums do not cover an interval of positive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 4, 5, 8, 10, 14, 16, 23, 27, 35, 42, 52, 61, 75, 89, 106, 126, 149, 173, 204, 237, 274, 319, 369, 424, 490, 560, 642, 734, 838, 952, 1085, 1231, 1394, 1579, 1784, 2011, 2269, 2554, 2872, 3225, 3619, 4054, 4540, 5077, 5671, 6332
Offset: 0

Views

Author

Gus Wiseman, Nov 17 2023

Keywords

Comments

We define a semi-sum of a multiset to be any sum of a 2-element submultiset. This is different from sums of pairs of elements. For example, 2 is the sum of a pair of elements of {1}, but there are no semi-sums.

Examples

			The partition y = (4,2,1) has semi-sums {3,5,6} which are missing 4, so y is counted under a(7).
The a(7) = 1 through a(13) = 10 partitions:
  (4,2,1)  (4,3,1)  (5,3,1)  (5,3,2)  (5,4,2)  (6,4,2)    (6,4,3)
           (5,2,1)  (6,2,1)  (5,4,1)  (6,3,2)  (6,5,1)    (6,5,2)
                             (6,3,1)  (6,4,1)  (7,3,2)    (7,4,2)
                             (7,2,1)  (7,3,1)  (7,4,1)    (7,5,1)
                                      (8,2,1)  (8,3,1)    (8,3,2)
                                               (9,2,1)    (8,4,1)
                                               (5,4,2,1)  (9,3,1)
                                               (6,3,2,1)  (10,2,1)
                                                          (6,4,2,1)
                                                          (7,3,2,1)
		

Crossrefs

For parts instead of sums we have A238007:
- complement A001227
- non-strict complement A034296, ranks A073491
- non-strict A239955, ranks A073492
The non-strict version is A367403.
The non-strict complement is A367402.
The complement is counted by A367410.
The non-binary version is A365831:
- non-strict complement A126796, ranks A325781
- complement A188431
- non-strict A365924, ranks A365830
A000009 counts partitions covering an initial interval, ranks A055932.
A046663 counts partitions w/o submultiset summing to k, strict A365663.
A365543 counts partitions w/ submultiset summing to k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&(d=Total/@Subsets[#, {2}];If[d=={},{}, Range[Min@@d,Max@@d]]!=Union[d])&]], {n,0,30}]
Showing 1-5 of 5 results.