cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367449 Numbers k for which there are exactly k pairs (i, j), 1 <= i < j < k, such that i + j is a divisor of k.

Original entry on oeis.org

30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 208, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1312, 1338, 1362, 1374
Offset: 1

Views

Author

Marius A. Burtea, Dec 10 2023

Keywords

Comments

Numbers k >= 1 for which A367588(k) = Sum_{d|k} floor((d-1)/2) = k;
Numbers k >= 1 for which A000203(k) - A000005(k) - A183063(k) = 2*k.
The sequence is infinite because all numbers of the form m = 6*p, p >= 5 prime (A138636), are terms.
Indeed: sigma(6*p) - tau(6*p) - A183063(6*p) = 3*4*(p + 1) - 8 - 4 = 12*p = 2*m.
If m = 2^k*p, p = 2^(k + 1) - 4*k - 3 prime number, then m is a term. Indeed: sigma(m) - tau(m) - A183063(m) = (2^(k + 1) - 1)*(p + 1) - 2*(k + 1) - 2*k = 2*m.

Examples

			30 is a term since it has exactly 30 pairs (i,j): (1, 2), (2, 3), (1, 4), (2, 4), (1, 5), (4, 6), (3, 7), (2, 8), (7, 8), (1,9), (6, 9), (5, 10), (4, 11), (3, 12), (2, 13), (1, 14), (14, 16), (13, 17),(12, 18), (11, 19), (10, 20), (9, 21), (8, 22), (7, 23), (6, 24), (5, 25), (4,26), (3, 27), (2, 28), (1, 29).
		

Crossrefs

Fixed points of A367588.

Programs

  • Magma
    [k:k in [1..1000]|(DivisorSigma(1,k)-#Divisors(k)-#[d:d in Divisors(k)| IsEven(d)]) eq 2*k ];
    
  • Maple
    filter:= proc(n) uses numtheory;
      sigma(n) - tau(n) - `if`(n::even, tau(n/2),0) = 2*n
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Dec 12 2023
  • Mathematica
    f1[p_, e_] := e+1; f1[2, e_] := 2*e+1; f2[p_, e_] := (p^(e+1)-1)/(p-1); s[1] = 0; s[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct - Times @@ f1 @@@ fct]; Select[Range[1400], s[#] == 2*# &] (* Amiram Eldar, Dec 16 2023 *)
  • PARI
    isok(k) = sumdiv(k, d, (d-1)\2) == k; \\ Michel Marcus, Dec 19 2023