A367449 Numbers k for which there are exactly k pairs (i, j), 1 <= i < j < k, such that i + j is a divisor of k.
30, 42, 54, 66, 78, 102, 114, 138, 174, 186, 208, 222, 246, 258, 282, 318, 354, 366, 402, 426, 438, 474, 498, 534, 582, 606, 618, 642, 654, 678, 762, 786, 822, 834, 894, 906, 942, 978, 1002, 1038, 1074, 1086, 1146, 1158, 1182, 1194, 1266, 1312, 1338, 1362, 1374
Offset: 1
Keywords
Examples
30 is a term since it has exactly 30 pairs (i,j): (1, 2), (2, 3), (1, 4), (2, 4), (1, 5), (4, 6), (3, 7), (2, 8), (7, 8), (1,9), (6, 9), (5, 10), (4, 11), (3, 12), (2, 13), (1, 14), (14, 16), (13, 17),(12, 18), (11, 19), (10, 20), (9, 21), (8, 22), (7, 23), (6, 24), (5, 25), (4,26), (3, 27), (2, 28), (1, 29).
Programs
-
Magma
[k:k in [1..1000]|(DivisorSigma(1,k)-#Divisors(k)-#[d:d in Divisors(k)| IsEven(d)]) eq 2*k ];
-
Maple
filter:= proc(n) uses numtheory; sigma(n) - tau(n) - `if`(n::even, tau(n/2),0) = 2*n end proc: select(filter, [$1..10000]); # Robert Israel, Dec 12 2023
-
Mathematica
f1[p_, e_] := e+1; f1[2, e_] := 2*e+1; f2[p_, e_] := (p^(e+1)-1)/(p-1); s[1] = 0; s[n_] := Module[{fct = FactorInteger[n]}, Times @@ f2 @@@ fct - Times @@ f1 @@@ fct]; Select[Range[1400], s[#] == 2*# &] (* Amiram Eldar, Dec 16 2023 *)
-
PARI
isok(k) = sumdiv(k, d, (d-1)\2) == k; \\ Michel Marcus, Dec 19 2023
Comments