A367453 Decimal expansion of (-1 + sqrt(21))/10 = 1/A222134.
3, 5, 8, 2, 5, 7, 5, 6, 9, 4, 9, 5, 5, 8, 4, 0, 0, 0, 6, 5, 8, 8, 0, 4, 7, 1, 9, 3, 7, 2, 8, 0, 0, 8, 4, 8, 8, 9, 8, 4, 4, 5, 6, 5, 7, 6, 7, 6, 7, 9, 7, 1, 9, 0, 2, 6, 0, 7, 2, 4, 2, 1, 2, 3, 9, 0, 6, 8, 6, 8, 4, 2, 5, 5, 4, 7, 7, 7, 0, 8, 8, 6, 6, 0, 4, 3, 6, 1, 5, 5, 9, 4, 9, 3, 4, 4, 5, 0, 3
Offset: 0
Examples
c = 0.3582575694955840006588047193728008488984456...
Links
- Paolo Xausa, Table of n, a(n) for n = 0..10000
Programs
-
Mathematica
First[RealDigits[(Sqrt[21]-1)/10,10,100]] (* Paolo Xausa, Nov 21 2023 *)
-
PARI
\\ Works in v2.13 and higher; n = 100 decimal places my(n=100); digits(floor(10^(n-1)*(quadgen(84)-1))) \\ Michal Paulovic, Nov 20 2023
Formula
c = 1/phi21 = (1/5)*(1 - phi21), with phi21 = (1 + sqrt(21))/2 = A222134, hence an algebraic number of the real quadratic number field Q(sqrt(21)) but not an algebraic integer like phi24.
Equals (A010477-1)/10. - R. J. Mathar, Nov 21 2023
Equals 2*A222135/10. - Hugo Pfoertner, Mar 21 2024
Comments