cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367505 Triangle read by rows: row n gives the h-vector of the n-th halohedron.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 27, 13, 1, 1, 21, 76, 76, 21, 1, 1, 31, 175, 300, 175, 31, 1, 1, 43, 351, 925, 925, 351, 43, 1, 1, 57, 637, 2401, 3675, 2401, 637, 57, 1, 1, 73, 1072, 5488, 11956, 11956, 5488, 1072, 73, 1, 1, 91, 1701, 11376, 33516, 47628, 33516, 11376, 1701, 91, 1
Offset: 0

Views

Author

F. Chapoton, Nov 21 2023

Keywords

Comments

Theorem 6.1.11 in Almeter's thesis gives the f-vector generating series. Then replacing x with x-1 gives the h-vector generating series.

Examples

			As a table:
  (1),
  (1,  1),
  (1,  3,  1),
  (1,  7,  7,  1),
  (1, 13, 27, 13,  1),
  (1, 21, 76, 76, 21,  1),
  ...
		

Crossrefs

Row sums are A051960(n-1) for n>=1.
Alternating sums form an aerated version of A110556.
Columns k=0-2 give A000012, A002061, A039623(n-1) for n>=2.

Programs

  • Mathematica
    T[0,0]:=1;T[n_,k_]:= Binomial[n-1,n-k]*Binomial[n,n-k]+Binomial[n-1,n-k-1]^2;Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* Detlef Meya, Nov 23 2023 *)
  • Sage
    x = polygen(QQ, 'x')
    t = x.parent()[['t']].0
    F = (1 + (1+x) * t) / (2 * sqrt(1 - 2 * (x+1) * t + (x-1)**2 * t**2)) + 1/2
    for poly in F.list(): print(poly.list())

Formula

G.f.: (1 + (1+x)*t)/(2*sqrt(1 - 2*(x+1)*t + (x-1)^2*t^2)) + 1/2.
T(0,0) = 1; T(n,k) = binomial(n-1,n-k)*binomial(n,n-k)+binomial(n-1,n-k-1)^2. - Detlef Meya, Nov 23 2023