A367505 Triangle read by rows: row n gives the h-vector of the n-th halohedron.
1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 13, 27, 13, 1, 1, 21, 76, 76, 21, 1, 1, 31, 175, 300, 175, 31, 1, 1, 43, 351, 925, 925, 351, 43, 1, 1, 57, 637, 2401, 3675, 2401, 637, 57, 1, 1, 73, 1072, 5488, 11956, 11956, 5488, 1072, 73, 1, 1, 91, 1701, 11376, 33516, 47628, 33516, 11376, 1701, 91, 1
Offset: 0
Examples
As a table: (1), (1, 1), (1, 3, 1), (1, 7, 7, 1), (1, 13, 27, 13, 1), (1, 21, 76, 76, 21, 1), ...
Links
- Jordan Grady Almeter, P-graph associahedra and hypercube graph associahedra, arXiv:2211.02113 [math.CO], 2022; Ph.D. thesis, North Carolina State University, 2022.
- Forcey's Hedra Zoo, Halohedron.
Crossrefs
Programs
-
Mathematica
T[0,0]:=1;T[n_,k_]:= Binomial[n-1,n-k]*Binomial[n,n-k]+Binomial[n-1,n-k-1]^2;Flatten[Table[T[n,k],{n,0,10},{k,0,n}]] (* Detlef Meya, Nov 23 2023 *)
-
Sage
x = polygen(QQ, 'x') t = x.parent()[['t']].0 F = (1 + (1+x) * t) / (2 * sqrt(1 - 2 * (x+1) * t + (x-1)**2 * t**2)) + 1/2 for poly in F.list(): print(poly.list())
Formula
G.f.: (1 + (1+x)*t)/(2*sqrt(1 - 2*(x+1)*t + (x-1)^2*t^2)) + 1/2.
T(0,0) = 1; T(n,k) = binomial(n-1,n-k)*binomial(n,n-k)+binomial(n-1,n-k-1)^2. - Detlef Meya, Nov 23 2023
Comments