A367590 Numbers with exactly two distinct prime factors, both appearing with the same exponent.
6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 6: {1,2} 57: {2,8} 106: {1,16} 10: {1,3} 58: {1,10} 111: {2,12} 14: {1,4} 62: {1,11} 115: {3,9} 15: {2,3} 65: {3,6} 118: {1,17} 21: {2,4} 69: {2,9} 119: {4,7} 22: {1,5} 74: {1,12} 122: {1,18} 26: {1,6} 77: {4,5} 123: {2,13} 33: {2,5} 82: {1,13} 129: {2,14} 34: {1,7} 85: {3,7} 133: {4,8} 35: {3,4} 86: {1,14} 134: {1,19} 36: {1,1,2,2} 87: {2,10} 141: {2,15} 38: {1,8} 91: {4,6} 142: {1,20} 39: {2,6} 93: {2,11} 143: {5,6} 46: {1,9} 94: {1,15} 145: {3,10} 51: {2,7} 95: {3,8} 146: {1,21} 55: {3,5} 100: {1,1,3,3} 155: {3,11}
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
Select[Range[100], SameQ@@Last/@If[#==1, {}, FactorInteger[#]]&&PrimeNu[#]==2&] Select[Range[200],PrimeNu[#]==2&&Length[Union[FactorInteger[#][[;;,2]]]]==1&] (* Harvey P. Dale, Aug 04 2025 *)
Comments