cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A367641 G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^4 / (1 + x)^3.

Original entry on oeis.org

1, 3, 10, 64, 504, 4368, 40208, 385728, 3813888, 38590208, 397648384, 4158436864, 44020882944, 470804670464, 5079479547904, 55217003536384, 604200374845440, 6649658071007232, 73560096496779264, 817467602640830464, 9121818467786162176
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+2, n-k)*binomial(4*k, k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+2,n-k) * binomial(4*k,k)/(3*k+1).
D-finite with recurrence 3*n*(5589*n-14914)*(3*n-1)*(3*n+1)*a(n) +(150903*n^4 -5939762*n^3 +21653157*n^2 -22049842*n +6856944)*a(n-1) +6*(-2312427*n^4 +15333754*n^3 -28367401*n^2 +6040114*n +14892656)*a(n-2) +24*(-3942141*n^4 +46541449*n^3 -199851671*n^2 +367766019*n -243569600)*a(n-3) -32*(n-5)*(8043984*n^3 -85808428*n^2 +305023231*n -361082892)*a(n-4) -384*(n-5)*(n-6)*(885234*n^2 -6808468*n +12951185)*a(n-5) -1536*(n-6)*(n-7)*(144699*n^2 -1203919*n +2337211)*a(n-6) -2048*(n-6)*(n-7)*(n-8)*(27819*n-74186)*a(n-7)=0. - R. J. Mathar, Dec 04 2023

A367639 G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^2 / (1 + x).

Original entry on oeis.org

1, 3, 6, 16, 52, 184, 688, 2672, 10672, 43552, 180800, 761088, 3241088, 13937408, 60435968, 263962880, 1160188672, 5127762432, 22775636992, 101608357888, 455105255424, 2045751037952, 9225923895296, 41731062358016, 189275050729472, 860630181167104
Offset: 0

Views

Author

Seiichi Manyama, Nov 25 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(k+2, n-k)*binomial(2*k, k)/(k+1));

Formula

G.f.: A(x) = 2*(1+x)^2 / (1+sqrt(1-4*x*(1+x))).
a(n) = Sum_{k=0..n} binomial(k+2,n-k) * binomial(2*k,k)/(k+1).
a(n) ~ 2^(n - 5/4) * (1 + sqrt(2))^(n + 3/2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Nov 25 2023
D-finite with recurrence (n+1)*a(n) +(-3*n+1)*a(n-1) +2*(-4*n+9)*a(n-2) +4*(-n+4)*a(n-3)=0. - R. J. Mathar, Dec 04 2023
From Peter Bala, May 05 2024: (Start)
A(x) = (1 + x)*S(x/(1 + x)), where S(x) = (1 - x - sqrt(1 - 6*x + x^2))/(2*x) is the g.f. of the large Schröder numbers A006318. Cf. A025227.
A333090(n) = [x^n] A(x)^n. (End)

A381860 G.f. A(x) satisfies A(x) = (1 + x)^3 * C(x*A(x)), where C(x) is the g.f. of A000108.

Original entry on oeis.org

1, 4, 12, 55, 327, 2157, 15141, 110853, 836790, 6465309, 50876776, 406335099, 3285202335, 26835060422, 221128733649, 1835973630276, 15344202894457, 128983332603009, 1089803313492966, 9250137181234430, 78837133437062307, 674408139329393187, 5788618956395607745
Offset: 0

Views

Author

Seiichi Manyama, Mar 08 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+3, n-k)/(3*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(3*k+1,k) * binomial(3*k+3,n-k)/(3*k+1).
D-finite with recurrence -2*n*(2*n+1)*a(n) +3*(n^2+13*n-6)*a(n-1) +3*(69*n^2-221*n+150)*a(n-2) +2*(397*n^2-2431*n+3471)*a(n-3) +6*(225*n^2-1953*n+4079)*a(n-4) +9*(135*n^2-1503*n+4084)*a(n-5) +9*(63*n^2-855*n+2860)*a(n-6) +12*(3*n-22)*(3*n-26)*a(n-7)=0. - R. J. Mathar, Mar 10 2025

A381938 G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A001764.

Original entry on oeis.org

1, 3, 9, 52, 380, 3066, 26304, 235314, 2170312, 20487963, 196988392, 1922327792, 18990571724, 189548947601, 1908604524752, 19364096602370, 197761735366804, 2031444188437719, 20974821788118024, 217561484977675026, 2265961977605950416, 23688432825547509283
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(2*k+2, n-k)/(4*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(4*k+1,k) * binomial(2*k+2,n-k)/(4*k+1).
a(n) = A381785(n) + A381785(n-1).

A381941 G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A002293.

Original entry on oeis.org

1, 3, 10, 71, 644, 6461, 68971, 768054, 8820281, 103694479, 1241799996, 15095075897, 185769856443, 2310006893997, 28978952155943, 366315306556482, 4661272734504606, 59659914501348239, 767539555514812321, 9920124234695256009, 128744011085858468131, 1677087982747514335025
Offset: 0

Views

Author

Seiichi Manyama, Mar 10 2025

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(2*k+2, n-k)/(5*k+1));

Formula

a(n) = Sum_{k=0..n} binomial(5*k+1,k) * binomial(2*k+2,n-k)/(5*k+1).
Showing 1-5 of 5 results.