A367641
G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^4 / (1 + x)^3.
Original entry on oeis.org
1, 3, 10, 64, 504, 4368, 40208, 385728, 3813888, 38590208, 397648384, 4158436864, 44020882944, 470804670464, 5079479547904, 55217003536384, 604200374845440, 6649658071007232, 73560096496779264, 817467602640830464, 9121818467786162176
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*k+2, n-k)*binomial(4*k, k)/(3*k+1));
A367639
G.f. A(x) satisfies A(x) = (1 + x)^2 + x*A(x)^2 / (1 + x).
Original entry on oeis.org
1, 3, 6, 16, 52, 184, 688, 2672, 10672, 43552, 180800, 761088, 3241088, 13937408, 60435968, 263962880, 1160188672, 5127762432, 22775636992, 101608357888, 455105255424, 2045751037952, 9225923895296, 41731062358016, 189275050729472, 860630181167104
Offset: 0
-
a(n) = sum(k=0, n, binomial(k+2, n-k)*binomial(2*k, k)/(k+1));
A381860
G.f. A(x) satisfies A(x) = (1 + x)^3 * C(x*A(x)), where C(x) is the g.f. of A000108.
Original entry on oeis.org
1, 4, 12, 55, 327, 2157, 15141, 110853, 836790, 6465309, 50876776, 406335099, 3285202335, 26835060422, 221128733649, 1835973630276, 15344202894457, 128983332603009, 1089803313492966, 9250137181234430, 78837133437062307, 674408139329393187, 5788618956395607745
Offset: 0
-
a(n) = sum(k=0, n, binomial(3*k+1, k)*binomial(3*k+3, n-k)/(3*k+1));
A381938
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A001764.
Original entry on oeis.org
1, 3, 9, 52, 380, 3066, 26304, 235314, 2170312, 20487963, 196988392, 1922327792, 18990571724, 189548947601, 1908604524752, 19364096602370, 197761735366804, 2031444188437719, 20974821788118024, 217561484977675026, 2265961977605950416, 23688432825547509283
Offset: 0
-
a(n) = sum(k=0, n, binomial(4*k+1, k)*binomial(2*k+2, n-k)/(4*k+1));
A381941
G.f. A(x) satisfies A(x) = (1 + x)^2 * B(x*A(x)), where B(x) is the g.f. of A002293.
Original entry on oeis.org
1, 3, 10, 71, 644, 6461, 68971, 768054, 8820281, 103694479, 1241799996, 15095075897, 185769856443, 2310006893997, 28978952155943, 366315306556482, 4661272734504606, 59659914501348239, 767539555514812321, 9920124234695256009, 128744011085858468131, 1677087982747514335025
Offset: 0
-
a(n) = sum(k=0, n, binomial(5*k+1, k)*binomial(2*k+2, n-k)/(5*k+1));
Showing 1-5 of 5 results.