A367684 Number of integer partitions of n whose multiset multiplicity kernel is a submultiset.
1, 1, 2, 2, 4, 5, 8, 10, 14, 17, 25, 30, 39, 51, 66, 79, 102, 125, 154, 191, 233, 284, 347, 420, 499, 614, 726, 867, 1031, 1233, 1437, 1726, 2002, 2375, 2770, 3271, 3760, 4455, 5123, 5994, 6904, 8064, 9199, 10753, 12241, 14202, 16189, 18704, 21194, 24504
Offset: 0
Keywords
Examples
The a(1) = 1 through a(7) = 10 partitions: (1) (2) (3) (4) (5) (6) (7) (11) (111) (22) (221) (33) (322) (211) (311) (222) (331) (1111) (2111) (411) (511) (11111) (2211) (2221) (3111) (4111) (21111) (22111) (111111) (31111) (211111) (1111111)
Crossrefs
Programs
-
Mathematica
submultQ[cap_,fat_]:=And@@Function[i, Count[fat,i]>=Count[cap, i]]/@Union[List@@cap]; mmk[q_List]:=With[{mts=Length/@Split[q]}, Sort[Table[Min@@Select[q,Count[q,#]==i&], {i,mts}]]]; Table[Length[Select[IntegerPartitions[n], submultQ[mmk[#],#]&]], {n,0,15}]
Comments