A367687 a(n) is the first prime p such that n*p+1 is the product of n primes counted with multiplicity.
2, 7, 17, 47, 79, 9479, 41, 5923, 199, 33461, 2141, 69173177, 11579, 7655281, 20753, 64869017, 233231, 2622816297743, 341477, 14508897313, 8138947, 24565981007, 27445337, 90698401133219401, 313566167, 2552728502809, 229909997, 23451738297083, 948780491, 20677177107714198558766009, 3390080033
Offset: 1
Examples
a(3) = 17 because 17 is prime and 3 * 17 + 1 = 52 = 2^2 * 13 is the product of 3 primes, and no smaller prime works.
Links
- Robert Israel, Table of n, a(n) for n = 1..500
Programs
-
Maple
f:= proc(n) uses priqueue; local Q,t,q,i; initialize(Q); q:= 2; while n mod q = 0 do q:= nextprime(q) od: insert([-q^n,q,n],Q); do t:= extract(Q); if -t[1]-1 mod n = 0 and isprime((-t[1]-1)/n) then return (-t[1]-1)/n fi; q:= nextprime(t[2]); while n mod q = 0 do q:= nextprime(q) od; for i from 1 to t[3] do insert([t[1]*(q/t[2])^i,q,i],Q); od od; end proc: map(f, [$1..40]);
Formula
A001222(n*a(n)+1) = n.