cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367755 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2) * A(x^3/6)).

Original entry on oeis.org

1, 1, 3, 13, 53, 301, 1951, 13203, 105673, 919873, 8472491, 86799241, 948033373, 10924180853, 135880443063, 1780842778471, 24496224075921, 357483642165313, 5454904465819603, 86909842633518373, 1453042115780967941, 25262405474642837341
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\3+1]*v[i-j]/(6^(j\3)*(j\3)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/3)) * a(n-1-k) / (6^floor(k/3) * floor(k/3)! * (n-1-k)!).

A367756 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3) * A(x^4/24)).

Original entry on oeis.org

1, 1, 3, 13, 73, 386, 2671, 20728, 175393, 1553968, 15520861, 165541806, 1869485773, 22249874518, 284029764383, 3804116563276, 53328350650081, 782331158754088, 12051288543702313, 193028133988081918, 3212490296905001781, 55543932173668760221
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\4+1]*v[i-j]/(24^(j\4)*(j\4)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/4)) * a(n-1-k) / (24^floor(k/4) * floor(k/4)! * (n-1-k)!).

A367757 E.g.f. satisfies A(x) = exp(x * (1 + x + x^2 + x^3 + x^4) * A(x^5/120)).

Original entry on oeis.org

1, 1, 3, 13, 73, 501, 3337, 27637, 254409, 2557369, 27603631, 313768731, 3905502745, 51573777841, 718307494269, 10507900625251, 161239887204721, 2608009648536417, 43989477103304155, 772109936171046001, 14085074476090366761, 266890182641557777093
Offset: 0

Views

Author

Seiichi Manyama, Nov 29 2023

Keywords

Crossrefs

Programs

  • PARI
    a_vector(n) = my(v=vector(n+1)); v[1]=1; for(i=1, n, v[i+1]=(i-1)!*sum(j=0, i-1, (j+1)*v[j\5+1]*v[i-j]/(120^(j\5)*(j\5)!*(i-1-j)!))); v;

Formula

a(0) = 1; a(n) = (n-1)! * Sum_{k=0..n-1} (k+1) * a(floor(k/5)) * a(n-1-k) / (120^floor(k/5) * floor(k/5)! * (n-1-k)!).
Showing 1-3 of 3 results.