cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367778 a(n) is the sum of the squares of the areas under Motzkin paths of length n.

Original entry on oeis.org

0, 1, 6, 40, 198, 910, 3848, 15492, 59920, 224917, 824074, 2960828, 10466610, 36498195, 125801144, 429284612, 1452174984, 4874940295, 16254780970, 53873727516, 177594715034, 582603630260, 1902860189328, 6190199896600, 20064013907288, 64815504118695, 208739559416878, 670345766842528
Offset: 1

Views

Author

AJ Bu, Nov 29 2023

Keywords

Comments

a(n) is the sum of the squares of the areas under Motzkin paths of length n (nonnegative walks beginning and ending in 0, with jumps -1,0,+1).

Examples

			a(3) = 6 = 1*2^2 + 2*1^2 because there is 1 Motzkin path of length 3 with area 2 and 2 Motzkin paths of length 3 with area 1.
		

Crossrefs

Programs

  • Maple
    G:=((x - 1 + sqrt(-(x + 1)*(3*x - 1)))*(3*sqrt(-(x + 1)*(3*x - 1))*x^4 - 9*x^5 - 14*sqrt(-(x + 1)*(3*x - 1))*x^3 + 15*x^4 + 8*sqrt(-(x + 1)*(3*x - 1))*x^2 + 26*x^3 + 4*sqrt(-(x + 1)*(3*x - 1))*x - 4*x^2 - sqrt(-(x + 1)*(3*x - 1)) - 5*x + 1))/( 4*(x + 1)^3*(3*x - 1)^3*x^2):  Gser:=series(G, x=0, 30): seq(coeff(Gser,x,n), n=1..26);
  • PARI
    seq(n) = {my(w=sqrt((1 + x)*(1 - 3*x) + O(x*x^n))); Vec((1 - x - w)*(w^2*(1 - 3*x - 7*x^2 + 3*x^3) - w*(1 - x)*(1 - 3*x - 11*x^2 + 3*x^3))/(2*w^3*x)^2, -n)} \\ Andrew Howroyd, Jan 07 2024

Formula

G.f.: (1 - x - w)*(w^2*(1 - 3*x - 7*x^2 + 3*x^3) - w*(1 - x)*(1 - 3*x - 11*x^2 + 3*x^3))/(2*w^3*x)^2 where w is sqrt((1 + x)*(1 - 3*x)).
D-finite with recurrence -(n+2)*(37012171*n -222599339)*a(n) +3*(n+1)*(108071243*n -631482704)*a(n-1) +(-512534971*n^2 +2421530181*n +1780794712)*a(n-2) +3*(-641100693*n^2 +4745437175*n -5322233482)*a(n-3) +(4162359143*n^2 -33175360881*n +59296953526)*a(n-4) +3*(1437180249*n^2 -9681487559*n +8357806732)*a(n-5) +9*(-754462425*n^2 +6932112703*n -14939114852)*a(n-6) -27*(218140823*n -693079002)*(n-5)*a(n-7)=0. - R. J. Mathar, Jan 11 2024