cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367790 E.g.f. satisfies A(x) = exp( x/(1-x)^4 * A(x) ).

Original entry on oeis.org

1, 1, 11, 148, 2669, 62056, 1777927, 60692920, 2408692505, 109074596320, 5553702114731, 314208715035304, 19561795753879909, 1329317730339826384, 97924919301787209647, 7773978186375852940696, 661702605336795904770353, 60119367618216155944350400
Offset: 0

Views

Author

Seiichi Manyama, Nov 30 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(-lambertw(-x/(1-x)^4))))

Formula

E.g.f.: exp( -LambertW(-x/(1-x)^4) ).
a(n) = n! * Sum_{k=0..n} (k+1)^(k-1) * binomial(n+3*k-1,n-k)/k!.