A367841 Numbers k such that k, k + 2, k + 4, k + 6, k + 8, k + 10, and k + 12 are all triprimes (A014612).
151401, 151403, 151405, 151407, 179535, 201085, 247349, 248411, 250933, 250935, 292407, 298433, 322215, 379761, 441327, 482691, 482693, 499907, 508671, 517427, 584219, 584221, 586257, 586259, 605207, 705055, 705057, 705059, 718193, 726563, 727639, 728815, 812601, 814247, 814249, 814251, 831385
Offset: 1
Keywords
Examples
a(5) = 179535 is a term because 179535 = 3 * 5 * 11969 179535 + 2 = 179537 = 17 * 59 * 179 179535 + 4 = 179539 = 29 * 41 * 151 179535 + 6 = 179541 = 3 * 3 * 19949 179535 + 8 = 179543 = 7 * 13 * 1973 179535 + 10 = 179545 = 5 * 149 * 241 179535 + 12 = 179547 = 3 * 97 * 617 are all triprimes.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A014612.
Programs
-
Maple
filter:= (t -> andmap(x -> numtheory:-bigomega(x)=3, [t,t+2,t+4,t+6,t+8, t+10,t+12])): select(filter, [seq(i,i=1 .. 10^6, 2)]);
Comments