A367854 Indices at which record high values occur in A367821.
1, 2, 4, 6, 72, 75, 152, 518, 631, 1585, 2512, 4217, 5275, 13895, 14678, 53367, 177828, 464159, 1154782, 2154435, 3162278, 4641589, 8483429, 8576959, 13894955, 15848932, 21544347, 68129207, 74989421, 100000001, 114504757, 170125428, 517947468, 1000000001
Offset: 1
Examples
From _Jon E. Schoenfield_, Dec 03 2023: (Start) The following table illustrates how the base-10 logarithm of each term from a(2) through a(17) is slightly larger than a ratio of integers N/D with D <= 21. . n a(n) log_10(a(n)) N/D log_10(a(n))*D -- ------ -------------- ----- -------------- 2 2 0.301029995... 3/10 3.01029995... 3 4 0.602059991... 3/5 3.01029995... 4 6 0.778151250... 7/9 7.00336125... 5 72 1.857332496... 13/7 13.00132747... 6 75 1.875061263... 15/8 15.00049010... 7 152 2.181843587... 24/11 24.00027946... 8 518 2.714329759... 19/7 19.00030831... 9 631 2.800029359... 14/5 14.00014679... 10 1585 3.200029266... 16/5 16.00014633... 11 2512 3.400019635... 17/5 17.00009817... 12 4217 3.625003601... 29/8 29.00002880... 13 5275 3.722222463... 67/18 67.00000435... 14 13895 4.142858551... 29/7 29.00000985... 15 14678 4.166666883... 25/6 25.00000130... 16 53367 4.727272789... 52/11 52.00000068... 17 177828 5.250000144... 21/4 21.00000057... ... E.g., log_10(a(17)) = log_10(177828) slightly exceeds 21/4; 10^(21/4) = 10^5 * 10^(1/4) = 100000 * 1.77827941..., so 177828^k is slightly farther above the nearest lower power of 10 than 177828^(k-4) is. This near-periodic behavior of the mantissas, with their slow upward creep at every 4th exponent, explains why none of the mantissas of 177828^k begin with 9 until k gets very large: . k 177828^k ------- ------------------ 1 1.7782800e+0000005 2 3.1622799e+0000010 3 5.6234188e+0000015 4 1.0000013e+0000021 5 1.7782824e+0000026 6 3.1622840e+0000031 7 5.6234263e+0000036 8 1.0000027e+0000042 9 1.7782847e+0000047 10 3.1622882e+0000052 11 5.6234338e+0000057 ... 15 5.6234412e+0000078 19 5.6234487e+0000099 23 5.6234562e+0000120 ... 1417539 8.9999657e+7442079 1417543 8.9999776e+7442100 1417547 8.9999896e+7442121 1417551 9.0000015e+7442142 (End)
Crossrefs
Cf. A367821.
Extensions
More terms from Jon E. Schoenfield, Dec 03 2023
Comments