A367861 Numbers k whose multiset multiplicity cokernel (in which each prime exponent becomes the greatest prime factor with that exponent) is different from that of all positive integers less than k.
1, 2, 3, 5, 6, 7, 10, 11, 12, 13, 14, 17, 19, 20, 22, 23, 26, 28, 29, 30, 31, 34, 37, 38, 41, 42, 43, 44, 45, 46, 47, 52, 53, 58, 59, 60, 61, 62, 63, 66, 67, 68, 71, 73, 74, 76, 78, 79, 82, 83, 84, 86, 89, 90, 92, 94, 97, 99, 101, 102, 103, 106, 107, 109, 113
Offset: 1
Keywords
Examples
The terms together with their prime indices begin: 1: {} 23: {9} 47: {15} 2: {1} 26: {1,6} 52: {1,1,6} 3: {2} 28: {1,1,4} 53: {16} 5: {3} 29: {10} 58: {1,10} 6: {1,2} 30: {1,2,3} 59: {17} 7: {4} 31: {11} 60: {1,1,2,3} 10: {1,3} 34: {1,7} 61: {18} 11: {5} 37: {12} 62: {1,11} 12: {1,1,2} 38: {1,8} 63: {2,2,4} 13: {6} 41: {13} 66: {1,2,5} 14: {1,4} 42: {1,2,4} 67: {19} 17: {7} 43: {14} 68: {1,1,7} 19: {8} 44: {1,1,5} 71: {20} 20: {1,1,3} 45: {2,2,3} 73: {21} 22: {1,5} 46: {1,9} 74: {1,12}
Crossrefs
Programs
-
Mathematica
nn=100; mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]]; qq=Table[Times@@mmc[Join@@ConstantArray@@@FactorInteger[n]], {n,nn}]; Select[Range[nn], FreeQ[Take[qq,#-1],qq[[#]]]&]
Comments