cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A367875 Expansion of e.g.f. exp(x * (3 + exp(x))).

Original entry on oeis.org

1, 4, 18, 91, 512, 3169, 21352, 155257, 1209680, 10039825, 88318136, 819958033, 8004898600, 81913041721, 876117919616, 9770201709649, 113347591376672, 1365288066794017, 17043527322085096, 220145837754233713, 2937871757773069496, 40451715334029650953
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (k+3)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} x^k / (1 - (k+3)*x)^(k+1).
a(n) = Sum_{k=0..n} (k+3)^(n-k) * binomial(n,k).
a(0) = 1; a(n) = 3 * a(n-1) + Sum_{k=1..n} binomial(n-1,k-1) * k * a(n-k). - Ilya Gutkovskiy, Feb 02 2024

A367876 Expansion of e.g.f. exp(x * (2 - exp(x))).

Original entry on oeis.org

1, 1, -1, -8, -15, 46, 445, 1240, -4319, -63782, -282219, 474508, 16681489, 119013142, 137086573, -6217558664, -73971468351, -333213031502, 2327570156197, 58209718600324, 509023624616881, 613709076338926, -48850389688059651, -773649504707845328
Offset: 0

Views

Author

Seiichi Manyama, Dec 03 2023

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(k=0, n, (-1)^k*(k+2)^(n-k)*binomial(n, k));

Formula

G.f.: Sum_{k>=0} (-x)^k / (1 - (k+2)*x)^(k+1).
a(n) = Sum_{k=0..n} (-1)^k * (k+2)^(n-k) * binomial(n,k).

A375652 Expansion of e.g.f. exp(2*x + x^2 * exp(x)).

Original entry on oeis.org

1, 2, 6, 26, 136, 812, 5494, 41414, 341800, 3056984, 29415274, 302501498, 3305797444, 38212967444, 465409979038, 5951991056558, 79686155008816, 1113909729606896, 16219814971477330, 245503998889083362, 3855373914424695196, 62708526467241370892
Offset: 0

Views

Author

Seiichi Manyama, Aug 22 2024

Keywords

Crossrefs

Programs

  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(2*x+x^2*exp(x))))
    
  • PARI
    a(n) = n!*sum(k=0, n\2, (k+2)^(n-2*k)/(k!*(n-2*k)!));

Formula

a(n) = n! * Sum_{k=0..floor(n/2)} (k+2)^(n-2*k) / (k! * (n-2*k)!).
Showing 1-3 of 3 results.