A368125
A variant of A367894 with application of the distance minimization to the first of two symmetrized versions of the strip bijection between two square lattices as described in A368121.
Original entry on oeis.org
1, 8, 12, 60, 24, 72, 300, 264, 216, 624, 168, 1692, 2232, 1752, 4824, 1560, 9804, 17064, 13080, 35040, 12456, 57084, 123096, 92952
Offset: 1
A368130 is the analog for the second symmetrized version of the strip bijection.
A368130
A variant of A367894 with application of the distance minimization to the second of two symmetrized versions of the strip bijection between two square lattices as described in A368126.
Original entry on oeis.org
1, 8, 12, 24, 156, 72, 216, 1836, 624, 168, 1752, 264, 16380, 4824, 1560, 13080, 2232, 128844, 35040, 12456, 92952, 17064, 945756, 244584
Offset: 1
- Hugo Pfoertner, Examples of points at minimum radius.
- Hugo Pfoertner, Illustration of the orbits corresponding to the terms a(2)-a(17), (2023).
- Hugo Pfoertner, Illustration of the orbit with L=128844 corresponding to a(18), (2023).
- Hugo Pfoertner, Illustration of the orbit with L=35040 corresponding to a(19), (2024).
- Hugo Pfoertner, Illustration of the orbit with L=12456 corresponding to a(20), (2024).
- Hugo Pfoertner, Illustration of the orbit with L=92952 corresponding to a(21), (2024).
- Hugo Pfoertner, Illustration of the orbit with L=17064 corresponding to a(22), (2024).
- Hugo Pfoertner, Illustration of the orbit with L=945756 corresponding to a(23), showing only every 11th visited point, (2024).
- Hugo Pfoertner, Illustration of the orbit with L=244584 corresponding to a(24), showing only every 11th visited point, (2024).
A368125 is the analog for the first symmetrized version of the strip bijection.
A367146
Cycle lengths obtained by repeated application of the distance-minimizing variant of the strip bijection for the square lattice described in A367150.
Original entry on oeis.org
1, 8, 12, 24, 25, 56, 120, 152, 154, 200, 217, 376, 464, 568, 616, 1242, 1368, 1624, 1736, 1945, 4376, 4968, 5176, 10682, 13016, 14152, 15560, 17497, 40376, 42728, 46648, 94234, 120664, 125320, 139976, 157465, 367544, 376936, 419896, 840570, 1100760, 1119496, 1259720
Offset: 1
a(1) = 1: D(0,0) -> [0,0];
a(2) = 8: [1,0] -> [1,1] -> [0,1] -> [-1,1] -> [-1,0] -> [-1,-1] -> [0,-1] -> [1,-1] -> [1,0];
a(3) = 12: [2,0] -> [2,1] -> [1,2] -> [0,2] -> [-1,2] -> [-2,1] -> [-2,0] -> [-2,-1] -> [-1,-2] -> [0,-2] -> [1,-2] -> [2,-1] -> [2,0].
List of start points and corresponding cycle lengths:
y 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
x \------------------------------------------------------------------
0 | 1 8 12 8 8 8 8 8 8 25 8 8 8 8 8 24 8
1 | 8 8 12 8 8 8 8 8 8 154 8 8 8 8 8 24 8
2 | 12 12 8 8 8 8 8 25 25 154 154 8 8 8 8 8 24
3 | 8 8 8 8 8 8 25 25 8 8 154 154 154 154 8 8 8
4 | 8 8 8 8 8 8 8 25 8 8 154 8 8 8 154 8 8
5 | 8 8 8 8 8 8 8 154 154 154 154 8 8 8 154 8 152
6 | 8 8 8 8 8 8 8 25 8 8 154 8 8 8 154 152 8
7 | 8 8 25 25 25 25 154 8 8 8 8 154 154 154 8 152 8
8 | 8 8 25 8 8 154 8 8 8 8 8 8 8 8 8 152 8
9 |154 25 154 8 8 154 154 8 8 8 8 8 8 8 8 152 8
10 | 8 8 154 154 154 154 154 8 8 8 8 24 24 24 8 152 8
11 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 152 8
12 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 8 152
13 | 8 8 8 154 8 8 8 154 8 8 24 8 8 8 24 8 8
14 | 8 8 8 8 154 154 154 8 8 8 8 24 24 24 8 8 8
15 | 24 24 8 8 8 8 152 152 152 152 152 152 8 8 8 8 24
16 | 8 8 24 8 8 152 8 8 8 152 8 8 152 8 8 24 8
-
\\ It is assumed that the PARI program from A367150 has been loaded and the functions defined there are available.
cycle(v) = {my (n=1, w=BijectionD(v)); while (w!=v, n++; w=BijectionD(w)); n};
a367146(rmax=205) = {my (L=List()); for (x=0, rmax, for(y=x, rmax, my(c=cycle([x, y])); if(setsearch(L, c)==0, listput(L, c); listsort(L, 1)))); L};
a367146() \\ produces terms up to a(18)=1624 in about 5 minutes run time.
Showing 1-3 of 3 results.
Comments