A367908 Numbers n such that there is only one way to choose a different binary index of each binary index of n.
1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 56, 67, 69, 70, 73, 74, 81, 88, 98, 104, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152, 154, 156, 162, 163, 165, 166, 168
Offset: 1
Examples
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence. The terms together with the corresponding set-systems begin: 1: {{1}} 2: {{2}} 3: {{1},{2}} 5: {{1},{1,2}} 6: {{2},{1,2}} 8: {{3}} 9: {{1},{3}} 10: {{2},{3}} 11: {{1},{2},{3}} 13: {{1},{1,2},{3}} 14: {{2},{1,2},{3}} 17: {{1},{1,3}} 19: {{1},{2},{1,3}} 21: {{1},{1,2},{1,3}} 22: {{2},{1,2},{1,3}}
Links
- John Tyler Rascoe, Table of n, a(n) for n = 1..2000
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1]; Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&]
-
Python
from itertools import count, islice, product def bin_i(n): #binary indices return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1']) def a_gen(): #generator of terms for n in count(1): p = list(product(*[bin_i(k) for k in bin_i(n)])) x,c = len(p),0 for j in range(x): if len(set(p[j])) == len(p[j]): c += 1 if j+1 == x and c == 1: yield(n) A367908_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024
Comments