A367921 Expansion of e.g.f. exp(4*(exp(x) - 1) - 3*x).
1, 1, 5, 17, 93, 505, 3269, 22657, 172461, 1407177, 12284629, 113832273, 1114775869, 11487315481, 124118143717, 1401808691489, 16504815145421, 202101235848297, 2568312461002741, 33808677627863537, 460227870278020957, 6468672644291075001, 93745096205219336709
Offset: 0
Keywords
Programs
-
Maple
b:= proc(n, k, m) option remember; `if`(n=0, 4^m, `if`(k>0, b(n-1, k-1, m+1)*k, 0)+m*b(n-1, k, m)+b(n-1, k+1, m)) end: a:= n-> b(n, 0$2): seq(a(n), n=0..22); # Alois P. Heinz, Apr 29 2025
-
Mathematica
nmax = 22; CoefficientList[Series[Exp[4 (Exp[x] - 1) - 3 x], {x, 0, nmax}], x] Range[0, nmax]! a[0] = 1; a[n_] := a[n] = -3 a[n - 1] + 4 Sum[Binomial[n - 1, k - 1] a[n - k], {k, 1, n}]; Table[a[n], {n, 0, 22}]
Formula
G.f. A(x) satisfies: A(x) = 1 - x * ( 3 * A(x) - 4 * A(x/(1 - x)) / (1 - x) ).
a(n) = exp(-4) * Sum_{k>=0} 4^k * (k-3)^n / k!.
a(0) = 1; a(n) = -3 * a(n-1) + 4 * Sum_{k=1..n} binomial(n-1,k-1) * a(n-k).