cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367954 Total number of steps of Euclid's GCD algorithm to calculate gcd(x,y) for all pairs x,y in the range 1 <= x < y <= n.

Original entry on oeis.org

0, 2, 7, 14, 26, 38, 57, 78, 102, 128, 165, 196, 240, 284, 329, 378, 440, 498, 571, 634, 704, 780, 875, 952, 1044, 1142, 1243, 1342, 1466, 1566, 1697, 1818, 1946, 2084, 2219, 2346, 2506, 2662, 2823, 2972, 3158, 3312, 3509, 3684, 3860, 4056, 4279, 4464, 4676
Offset: 1

Views

Author

Darío Clavijo, Dec 05 2023

Keywords

Comments

A000096(n-1) < a(n) < A367690(n).

Crossrefs

Programs

  • Maple
    g:= proc(x, y) option remember;
          `if`(y=0, 0, 1+g(y, irem(x, y)))
        end:
    a:= proc(n) option remember; `if`(n=0, 0,
          a(n-1)+add(g(j, n), j=1..n-1))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Dec 05 2023
  • Mathematica
    g[x_, y_] := g[x, y] = If[y == 0, 0, 1 + g[y, Mod[x, y]]];
    a[n_] := a[n] = If[n == 0, 0, a[n - 1] + Sum[g[j, n], { j, 1, n - 1}]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 08 2024, after Alois P. Heinz *)
  • Python
    A107435 = lambda x, y: 0 if y == 0 else 1 + A107435(y, x % y)
    a = lambda n: sum(A107435(y,x)+1 for x in range(1, n+1) for y in range(x+1, n+1))
    print([a(n) for n in range(1, 50)])

Formula

a(n) = Sum_{x=1..n} Sum_{y=x+1..n} (A107435(y,x) + 1).
a(n) = A367690(n) - A367892(n).
a(n) = A367892(n) + A000096(n).
a(n) = A000217(n-1) + Sum_{i=1..n} A049826(i).