cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A367960 Decimal expansion of tanh(Pi/2).

Original entry on oeis.org

9, 1, 7, 1, 5, 2, 3, 3, 5, 6, 6, 7, 2, 7, 4, 3, 4, 6, 3, 7, 3, 0, 9, 2, 9, 2, 1, 4, 4, 2, 6, 1, 8, 7, 7, 5, 3, 6, 7, 9, 2, 7, 1, 4, 8, 6, 0, 1, 0, 8, 8, 9, 4, 5, 3, 4, 3, 5, 7, 4, 1, 2, 4, 2, 9, 1, 5, 0, 6, 1, 7, 1, 4, 0, 7, 0, 1, 9, 7, 1, 5, 0, 4, 4, 1, 4, 9, 4, 8, 6, 4, 6
Offset: 0

Views

Author

R. J. Mathar, Dec 06 2023

Keywords

Examples

			0.91715233566727434637309...
		

References

  • Calvin C. Clawson, Mathematical Mysteries: The Beauty and Magic of Numbers, Springer, 2013. See p. 225.

Crossrefs

Cf. A367961, A367959, A308715, A083124 (cont. frac).

Programs

  • Maple
    evalf(tanh(Pi/2)) ;
  • Mathematica
    First[RealDigits[Tanh[Pi/2],10,100]] (* Paolo Xausa, Dec 06 2023 *)

Formula

Equals 1/A367961 = A367959 / A308715 = (2/Pi)*A228048.
Equals (e^Pi - 1)/(e^Pi + 1) = K_{n>0} Pi^(2-[n=1])/(4*n - 2) (see Clawson at p. 225). - Stefano Spezia, Jul 01 2024

A367976 Decimal expansion of Sum_{k >= 0} (-1)^k/(1+k^2).

Original entry on oeis.org

6, 3, 6, 0, 1, 4, 5, 2, 7, 4, 9, 1, 0, 6, 6, 5, 8, 1, 4, 7, 5, 1, 1, 8, 2, 9, 1, 8, 3, 6, 0, 1, 8, 7, 7, 7, 9, 2, 0, 3, 5, 9, 1, 8, 1, 7, 3, 0, 1, 5, 7, 9, 7, 4, 7, 5, 3, 4, 4, 8, 3, 9, 1, 9, 2, 8, 1, 2, 3, 0, 9, 5, 6, 8, 4, 7, 4, 3, 9, 4, 4, 0, 9, 5, 5, 7, 6, 5, 5, 8, 6, 0, 5, 3, 4, 6, 8, 8, 2, 2, 4, 3, 0, 5
Offset: 0

Views

Author

R. J. Mathar, Dec 07 2023

Keywords

Examples

			0.636014527491066581475118291836...
		

Crossrefs

Cf. A113319.

Programs

  • Maple
    1/4*(2-Pi*tanh(Pi/2)+Pi*coth(Pi/2)) ; evalf(%) ;
  • Mathematica
    RealDigits[(1 + Pi*Csch[Pi])/2, 10, 120][[1]] (* Amiram Eldar, Dec 11 2023 *)
  • PARI
    sumalt(k=0, (-1)^k/(1+k^2)) \\ Michel Marcus, Dec 07 2023

Formula

Equals (2-Pi*tanh(Pi/2)+Pi*coth(Pi/2))/4 = (1 - A228048 + Pi/2*A367961)/2.
From Amiram Eldar, Dec 11 2023: (Start)
Equals (1 + Pi/sinh(Pi))/2.
Equals Integral_{x>=0} (cos(x)/cosh(x))^2 dx. (End)
Equals (1+A090986)/2. - R. J. Mathar, Dec 13 2023
Showing 1-2 of 2 results.