A367991 The sum of the divisors of the squarefree part of n.
1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
Mathematica
f[p_, e_] := If[OddQ[e], p + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]+1, 1));}
Formula
Multiplicative with a(p^e) = p + 1 if e is odd and 1 otherwise.
a(n) >= 1, with equality if and only if n is a square (A000290).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4)/zeta(3) = 0.900392677639... .
Comments