cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A367991 The sum of the divisors of the squarefree part of n.

Original entry on oeis.org

1, 3, 4, 1, 6, 12, 8, 3, 1, 18, 12, 4, 14, 24, 24, 1, 18, 3, 20, 6, 32, 36, 24, 12, 1, 42, 4, 8, 30, 72, 32, 3, 48, 54, 48, 1, 38, 60, 56, 18, 42, 96, 44, 12, 6, 72, 48, 4, 1, 3, 72, 14, 54, 12, 72, 24, 80, 90, 60, 24, 62, 96, 8, 1, 84, 144, 68, 18, 96, 144, 72
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2023

Keywords

Comments

First differs from A348503 at n = 72 and from A344695 at n = 108.
The sum of the infinitary divisors (A077609) of n that are squarefree (A005117). - Amiram Eldar, Jun 03 2025

Crossrefs

Programs

  • Mathematica
    f[p_, e_] := If[OddQ[e], p + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i,2]%2, f[i,1]+1, 1));}

Formula

Multiplicative with a(p^e) = p + 1 if e is odd and 1 otherwise.
a(n) = A000203(A007913(n)) = A048250(A007913(n)).
a(n) = A048250(n)/A367990(n).
a(n) >= 1, with equality if and only if n is a square (A000290).
a(n) <= A000203(n), with equality if and only if n is squarefree (A005117).
Dirichlet g.f.: zeta(2*s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^s).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = zeta(4)/zeta(3) = 0.900392677639... .