A368012 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j) with i,j = 0, ..., n-1.
1, 1, 3, 95, 38057, 207372681, 15977248385955, 17828166968924572623, 292842668371666277607183121, 71645110588632775032727941092738473, 263399284865064400938403105805219201386749363, 14653009564320804036813733761485114583670416021283903839, 12403293423772370760211339634714413308535752478944832963336911564521
Offset: 0
Keywords
Examples
a(4) = 38057: 1, 1, 2, 5; 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132.
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
Join[{1},Table[Permanent[Table[CatalanNumber[i+j],{i,0,n-1},{j,0,n-1}]],{n,12}]]
-
PARI
C(n) = binomial(2*n, n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n, n, i, j, C(i+j-2))); \\ Michel Marcus, Dec 11 2023
Formula
Det(M(n)) = 1 (see Mays and Wojciechowski, 2000).