A368019 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+1) with i,j = 0, ..., n-1.
1, 1, 9, 979, 1417675, 28665184527, 8325587326635565, 35389363346700690999467, 2230867495754739989535874468003, 2106171270085074740753132799048111935155, 30007898337707083458776293190436074888346472515407, 6491219550166075876771081259839537013093735814742318424677245
Offset: 0
Keywords
Examples
a(4) = 1417675: 1, 2, 5, 14; 2, 5, 14, 42; 5, 14, 42, 132; 14, 42, 132, 429.
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+1],{i,0,n-1},{j,0,n-1}]],{n,11}]]
-
PARI
C(n) = binomial(2*n,n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n,n,i,j,C(i+j-1))); \\ Michel Marcus, Dec 09 2023
Formula
Det(M(n)) = 1 (see Mays and Wojciechowski, 2000).