A368021 a(n) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+3) with i,j = 0, ..., n-1.
1, 5, 406, 490614, 8755482505, 2318987094804471, 9179129956137993425772, 546580120389987275414413168012, 492460174883711250780962744103403975159, 6747075036368337341936435881321217868978170152215, 1411689504898999110533224343869931312130954127737962059963934
Offset: 0
Keywords
Examples
a(4) = 8755482505: 5, 14, 42, 132; 14, 42, 132, 429; 42, 132, 429, 1430; 132, 429, 1430, 4862.
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Mathematica
Join[{1},Table[Permanent[Table[CatalanNumber[i+j+3],{i,0,n-1},{j,0,n-1}]],{n,10}]]
-
PARI
C(n) = binomial(2*n, n)/(n+1); \\ A000108 a(n) = matpermanent(matrix(n, n, i, j, C(i+j+1))); \\ Michel Marcus, Dec 11 2023
Formula
Det(M(n)) = A000330(n+1) (see Mays and Wojciechowski, 2000).