A368025 Array read by ascending antidiagonals: A(n,k) is the determinant of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+k) with i,j = 0, ..., n-1.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 5, 1, 1, 1, 4, 14, 14, 1, 1, 1, 5, 30, 84, 42, 1, 1, 1, 6, 55, 330, 594, 132, 1, 1, 1, 7, 91, 1001, 4719, 4719, 429, 1, 1, 1, 8, 140, 2548, 26026, 81796, 40898, 1430, 1, 1, 1, 9, 204, 5712, 111384, 884884, 1643356, 379236, 4862, 1
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 5, 14, 42, 132, ... 1, 1, 3, 14, 84, 594, 4719, ... 1, 1, 4, 30, 330, 4719, 81796, ... 1, 1, 5, 55, 1001, 26026, 884884, ... 1, 1, 6, 91, 2548, 111384, 6852768, ... 1, 1, 7, 140, 5712, 395352, 41314284, ... ...
Links
- Arthur T. Benjamin, Naiomi T. Cameron, Jennifer J. Quinn, and Carl R. Yerger, Catalan determinants-a combinatorial approach, Congressus Numerantium 200, 27-34 (2010). On ResearchGate.
- Jishe Feng, The explicit formula of Hankel determinant with Catalan elements, arXiv:2010.06586 [math.GM], 2020.
- M. E. Mays and Jerzy Wojciechowski, A determinant property of Catalan numbers. Discrete Math. 211, No. 1-3, 125-133 (2000).
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Maple
A:= proc(n, k) option remember; `if`(k=0, 1, 2^n*mul( (2*(k-i)+2*n-3)/(k+2*n-1-i), i=0..n-1)*A(n, k-1)) end: seq(seq(A(d-k, k), k=0..d), d=0..10); # Alois P. Heinz, Dec 20 2023
-
Mathematica
A[n_,k_]:=If[n==0,1,Det[Table[CatalanNumber[i+j+k],{i,0,n-1},{j,0,n-1}]]]; Table[A[n-k,k],{n,0,11},{k,0,n}]//Flatten
Comments