A368026 Array read by ascending antidiagonals: A(n, k) is the permanent of the n-th order Hankel matrix of Catalan numbers M(n) whose generic element is given by M(i,j) = A000108(i+j+k) with i,j = 0, ..., n-1.
1, 1, 1, 3, 1, 1, 95, 9, 2, 1, 38057, 979, 53, 5, 1, 207372681, 1417675, 19148, 406, 14, 1, 15977248385955, 28665184527, 97432285, 490614, 3612, 42, 1, 17828166968924572623, 8325587326635565, 7146659536022, 8755482505, 14798454, 35442, 132, 1, 292842668371666277607183121, 35389363346700690999467, 7683122105385590481, 2318987094804471, 930744290905, 499114473, 372801, 429, 1
Offset: 0
Examples
The array begins: 1, 1, 1, 1, 1, ... 1, 1, 2, 5, 14, ... 3, 9, 53, 406, 3612, ... 95, 979, 19148, 490614, 14798454, ... 38057, 1417675, 97432285, 8755482505, 930744290905, ... ...
Links
- Wikipedia, Hankel matrix.
Crossrefs
Programs
-
Maple
with(LinearAlgebra): C:= proc(n) option remember; binomial(2*n, n)/(n+1) end: A:= (n, k)-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> C(i+j+k-2)))): seq(seq(A(d-k, k), k=0..d), d=0..8); # Alois P. Heinz, Dec 20 2023
-
Mathematica
A[n_,k_]:=If[n==0,1,Permanent[Table[CatalanNumber[i+j+k],{i,0,n-1},{j,0,n-1}]]]; Table[A[n-k,k],{n,0,8},{k,0,n}]//Flatten