A369379 Number of Dabbaghian-Wu pandiagonal Latin squares of order 2n+1 with the first row in order.
1, 0, 0, 4, 0, 0, 72, 0, 0, 108, 0, 0, 4, 0, 0, 180, 0, 3, 216, 0, 0, 252, 0, 0, 264, 0, 0, 0, 0, 0, 360, 0, 5, 396, 0, 0, 432, 0, 0, 468, 0, 0, 0, 0, 0, 868, 0, 5, 576, 0
Offset: 1
Examples
n=13=6*2+1 (prime order): . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 0 1 11 12 8 4 10 7 5 6 9 4 10 11 2 8 1 3 0 12 6 9 7 5 11 5 9 7 10 0 12 1 3 2 8 4 6 8 7 10 5 9 6 11 2 0 4 3 12 1 12 0 4 6 7 2 9 10 5 11 1 8 3 1 6 12 8 3 4 5 11 9 10 7 2 0 9 2 3 4 12 8 1 6 7 5 0 10 11 10 11 5 0 1 3 7 8 4 12 6 9 2 5 9 1 11 2 10 0 12 6 8 4 3 7 6 8 7 10 0 11 2 9 1 3 12 5 4 7 4 6 12 5 9 10 3 2 0 11 1 8 3 12 8 9 6 7 4 5 11 1 2 0 10 . n=19=6*3+1 (prime order): . 0 1 2 3 4 5 6 7 8 9 10 11 12 2 3 0 1 11 12 8 4 10 7 5 6 9 4 10 11 2 8 1 3 0 12 6 9 7 5 11 5 9 7 10 0 12 1 3 2 8 4 6 8 7 10 5 9 6 11 2 0 4 3 12 1 12 0 4 6 7 2 9 10 5 11 1 8 3 1 6 12 8 3 4 5 11 9 10 7 2 0 9 2 3 4 12 8 1 6 7 5 0 10 11 10 11 5 0 1 3 7 8 4 12 6 9 2 5 9 1 11 2 10 0 12 6 8 4 3 7 6 8 7 10 0 11 2 9 1 3 12 5 4 7 4 6 12 5 9 10 3 2 0 11 1 8 3 12 8 9 6 7 4 5 11 1 2 0 10 . n=25=6*4+1 (nonprime order): . 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 3 4 15 6 7 8 9 5 11 12 13 14 0 16 17 18 19 10 21 22 23 24 20 1 2 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 21 22 23 24 5 1 2 3 4 20 9 5 11 12 13 14 10 16 17 18 19 20 21 22 23 24 0 1 2 3 4 15 6 7 8 12 13 14 0 16 17 18 19 10 21 22 23 24 5 1 2 3 4 20 6 7 8 9 15 11 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 18 19 10 21 22 23 24 20 1 2 3 4 15 6 7 8 9 5 11 12 13 14 0 16 17 21 22 23 24 5 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 24 0 1 2 3 4 15 6 7 8 9 5 11 12 13 14 10 16 17 18 19 20 21 22 23 2 3 4 20 6 7 8 9 15 11 12 13 14 0 16 17 18 19 10 21 22 23 24 5 1 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 8 9 5 11 12 13 14 0 16 17 18 19 10 21 22 23 24 20 1 2 3 4 15 6 7 11 12 13 14 15 16 17 18 19 0 21 22 23 24 5 1 2 3 4 20 6 7 8 9 10 14 10 16 17 18 19 20 21 22 23 24 0 1 2 3 4 15 6 7 8 9 5 11 12 13 17 18 19 10 21 22 23 24 5 1 2 3 4 20 6 7 8 9 15 11 12 13 14 0 16 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 23 24 20 1 2 3 4 15 6 7 8 9 5 11 12 13 14 0 16 17 18 19 10 21 22 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 21 22 23 24 5 4 15 6 7 8 9 5 11 12 13 14 10 16 17 18 19 20 21 22 23 24 0 1 2 3 7 8 9 15 11 12 13 14 0 16 17 18 19 10 21 22 23 24 5 1 2 3 4 20 6 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 0 1 2 3 4 5 6 7 8 9 13 14 0 16 17 18 19 10 21 22 23 24 20 1 2 3 4 15 6 7 8 9 5 11 12 16 17 18 19 0 21 22 23 24 5 1 2 3 4 20 6 7 8 9 10 11 12 13 14 15 19 20 21 22 23 24 0 1 2 3 4 15 6 7 8 9 5 11 12 13 14 10 16 17 18 22 23 24 5 1 2 3 4 20 6 7 8 9 15 11 12 13 14 0 16 17 18 19 10 21
Links
- Vahid Dabbaghian and Tiankuang Wu, Constructing non-cyclic pandiagonal Latin squares of prime orders, Journal of Discrete Algorithms, Vol. 30, 2015, pp. 70-77, doi: 10.1016/j.jda.2014.12.001.
- Index entries for sequences related to Latin squares and rectangles.
Comments