A368055 Smallest prime number p such that x^n + y^n + z^n mod p does not take all values on Z/pZ.
5, 11, 7, 29, 5, 19, 11, 23, 5, 53, 29, 11, 5, 103, 7, 191, 5, 29, 23, 47, 5, 11, 53, 19, 5, 59, 7, 311, 5, 23, 103, 11, 5, 149, 191, 53, 5, 83, 7, 173, 5, 11, 47, 283, 5, 29, 11, 103, 5, 107, 7, 11, 5, 191, 59, 709, 5, 367, 311, 19, 5, 11, 7, 269, 5, 47, 11, 569, 5, 293, 149, 11
Offset: 4
Keywords
Examples
For n = 4, x^4 + y^4 + z^4 attains all values on Z/2Z and Z/3Z, but x^4 + y^4 + z^4 == 4 (mod 5) has no solution, so a(4) = 5. For n = 5, x^5 + y^5 + z^5 attains all values on Z/2Z, Z/3Z, Z/5Z, and Z/7Z, but x^5 + y^5 + z^5 == 4 (mod 11) has no solution, so a(5) = 11.
Links
- Chai Wah Wu, Table of n, a(n) for n = 4..5226 (terms 4..500 from Robert Israel)
Crossrefs
Cf. A367689.
Programs
-
Maple
f:= proc(n) local p,s,t,T,S,S2,S3; p:= 2; do p:= nextprime(p); T:= {$0..p-1}: S:= {seq(s^n mod p,s=0..p-1)}; if S = T then next fi; S2:= {seq(seq(s+t mod p, s=S),t=S)}; if S2 = T then next fi; S3:= {seq(seq(s+t mod p, s=S),t=S2)}: if S3 <> T then return p fi od end proc: map(f, [$4..100]); # Robert Israel, Jan 26 2024
-
Python
from itertools import combinations_with_replacement from sympy import nextprime def A368055(n): p = 1 while (p:=nextprime(p)): pset = set(q:=tuple(pow(x,n,p) for x in range(p))) if not all(any((k-a[0]-a[1])%p in pset for a in combinations_with_replacement(q,2)) for k in range(p)): return p # Chai Wah Wu, Apr 04 2024
-
SageMath
def a(n): for p in Primes(): all_values = set() for x in range(p): for y in range(p): for z in range(p): all_values.add((x^n+y^n+z^n)%p) if len(all_values) < p: return p
Formula
a(n+k*(a(n)-1)) <= a(n). - Robert Israel, Jan 26 2024
Comments