A368204 Number of partitions of [n] whose block minima sum to n.
1, 1, 0, 2, 2, 2, 29, 56, 191, 380, 5097, 14288, 74359, 283884, 1106529, 13588409, 53640963, 350573155, 1867738775, 10770352150, 50050737949, 744605446778, 3615378756421, 29368052533243, 195027586980839, 1442227919200245, 8964685271444243, 61478734886319324
Offset: 0
Keywords
Examples
a(0) = 1: the empty partition. a(1) = 1: 1. a(2) = 0. a(3) = 2: 13|2, 1|23. a(4) = 2: 124|3, 12|34. a(5) = 2: 1235|4, 123|45. a(6) = 29: 12346|5, 1234|56, 1456|2|3, 145|26|3, 145|2|36, 146|25|3, 14|256|3, 14|25|36, 146|2|35, 14|26|35, 14|2|356, 156|24|3, 15|246|3, 15|24|36, 16|245|3, 1|2456|3, 1|245|36, 16|24|35, 1|246|35, 1|24|356, 156|2|34, 15|26|34, 15|2|346, 16|25|34, 1|256|34, 1|25|346, 16|2|345, 1|26|345, 1|2|3456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..677
- Wikipedia, Partition of a set
Programs
-
Maple
b:= proc(n, i, t, m) option remember; `if`(n=0, t^(m-i+1), `if`((i+m)*(m+1-i)/2
n, 0, `if`(t=0, 0, t*b(n, i+1, t, m))+ b(n-i, i+1, t+1, m))) end: a:= n-> b(n, 1, 0, n): seq(a(n), n=0..42); -
Mathematica
b[n_, i_, t_, m_] := b[n, i, t, m] = If[n == 0, t^(m - i + 1), If[(i + m)*(m + 1 - i)/2 < n || i > n, 0, If[t == 0, 0, t*b[n, i + 1, t, m]] + b[n - i, i + 1, t + 1, m]]]; a[n_] := If[n == 0, 1, b[n, 1, 0, n]]; Table[a[n], {n, 0, 42}] (* Jean-François Alcover, Jun 10 2024, after Alois P. Heinz *)
Formula
a(n) = A124327(n,n).