cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368322 Expansion of e.g.f. exp(2*x) / (4 - 3*exp(x)).

Original entry on oeis.org

1, 5, 37, 389, 5413, 94085, 1962277, 47746949, 1327769893, 41538664325, 1443908686117, 55210237509509, 2302968844974373, 104068337416767365, 5064468256286449957, 264065894676248072069, 14686540175450593986853, 867871886679723760867205
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=2, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 2^n + 3 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (16/9)*A032033(n) - (1/3)*(1 + (4/3)*0^n).

A368324 Expansion of e.g.f. exp(4*x) / (4 - 3*exp(x)).

Original entry on oeis.org

1, 7, 61, 679, 9589, 167167, 3488221, 84882679, 2360477509, 73846507567, 2566948755181, 98151533290279, 4094166835331029, 185010377629273567, 9003499122285420541, 469450479424436219479, 26109404756356597154149, 1542883354097286642881167
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=4, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 4^n + 3 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (256/81)*A032033(n) - (1/3)*(3^n + (4/3)*2^n + 16/9 + (64/27)*0^n).
Showing 1-2 of 2 results.