cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368322 Expansion of e.g.f. exp(2*x) / (4 - 3*exp(x)).

Original entry on oeis.org

1, 5, 37, 389, 5413, 94085, 1962277, 47746949, 1327769893, 41538664325, 1443908686117, 55210237509509, 2302968844974373, 104068337416767365, 5064468256286449957, 264065894676248072069, 14686540175450593986853, 867871886679723760867205
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=2, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 2^n + 3 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (16/9)*A032033(n) - (1/3)*(1 + (4/3)*0^n).

A368323 Expansion of e.g.f. exp(3*x) / (4 - 3*exp(x)).

Original entry on oeis.org

1, 6, 48, 516, 7212, 125436, 2616348, 63662556, 1770359772, 55384885596, 1925211581148, 73613650011996, 3070625126631132, 138757783222353756, 6752624341715261148, 352087859568330751836, 19582053567267458627292, 1157162515572965014445916
Offset: 0

Views

Author

Seiichi Manyama, Dec 21 2023

Keywords

Crossrefs

Programs

  • Mathematica
    With[{nn=20},CoefficientList[Series[Exp[3x]/(4-3Exp[x]),{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Aug 18 2025 *)
  • PARI
    b(n, t) = sum(k=0, n, t^k*k!*stirling(n, k, 2));
    a(n, m=3, t=3) = my(u=1+1/t); u^m*b(n, t)-(1/t)*sum(j=0, m-1, u^j*(m-1-j)^n);

Formula

a(n) = 3^n + 3 * Sum_{k=1..n} binomial(n,k) * a(n-k).
a(n) = (64/27)*A032033(n) - (1/3)*(2^n + 4/3 + (16/9)*0^n).
Showing 1-2 of 2 results.