cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368415 Array read by ascending antidiagonals. A(n, k) = floor((n^k + 3)*(n/(2*n + 2))).

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 7, 11, 6, 1, 3, 11, 26, 31, 11, 1, 4, 16, 53, 103, 92, 22, 1, 4, 22, 93, 261, 410, 274, 43, 1, 5, 29, 151, 556, 1303, 1639, 821, 86, 1, 5, 37, 228, 1051, 3333, 6511, 6554, 2461, 171, 1, 6, 46, 329, 1821, 7354, 19996, 32553, 26215, 7382, 342, 1, 6, 56, 455, 2953
Offset: 1

Views

Author

Thomas Scheuerle, Dec 23 2023

Keywords

Comments

Let p be an odd prime number, then A(p, k) is the number of distinct quadratic residues mod p^k. Let m = p1^k1^*p2^k2*..*pz^kz with p1..pz odd primes, then A(p1, k1)*A(p2, k2)*..*A(pz, kz) is the number of distinct quadratic residues mod m. For 2^t*m is floor((2^t+10)*(1/6))*A(p1, k1)*A(p2, k2)*..*A(pz, kz) the number of distinct quadratic residues mod 2^t*m.

Examples

			The array A(n, k) begins:
1,  1,   1,    1,     1,      1,       1,        1,         1,          1
1,  2,   3,    6,    11,     22,      43,       86,       171,        342
2,  4,  11,   31,    92,    274,     821,     2461,      7382,      22144
2,  7,  26,  103,   410,   1639,    6554,    26215,    104858,     419431
3, 11,  53,  261,  1303,   6511,   32553,   162761,    813803,    4069011
3, 16,  93,  556,  3333,  19996,  119973,   719836,   4319013,   25914076
4, 22, 151, 1051,  7354,  51472,  360301,  2522101,  17654704,  123582922
4, 29, 228, 1821, 14564, 116509,  932068,  7456541,  59652324,  477218589
5, 37, 323, 2953, 26573, 239149, 2152337, 19371025, 174339221, 1569052981
5, 46, 455, 4546, 45455, 454546, 4545455, 45454546, 454545455, 4545454546
		

Crossrefs

Programs

  • PARI
    A(n, k) = (n^(k+1)+n*3)\(2*n+2)

Formula

A(n, k) = n*A(n, k-1) + A(n, k-2) - n*A(n, k-3), for k > 2 and A(n, 0) = 1.
A(1, k) = 1.
A(2, k) = A005578(k).
A(3, k) = A039300(k).
A(4, k) = A363773(k).
A(5, k) = A039302(k).
A(7, k) = A039304(k).
A(8, k) = A172241(k+1)+1.
A(n, 2) = A000124(n-1), for n > 0.