A368415 Array read by ascending antidiagonals. A(n, k) = floor((n^k + 3)*(n/(2*n + 2))).
1, 1, 1, 2, 2, 1, 2, 4, 3, 1, 3, 7, 11, 6, 1, 3, 11, 26, 31, 11, 1, 4, 16, 53, 103, 92, 22, 1, 4, 22, 93, 261, 410, 274, 43, 1, 5, 29, 151, 556, 1303, 1639, 821, 86, 1, 5, 37, 228, 1051, 3333, 6511, 6554, 2461, 171, 1, 6, 46, 329, 1821, 7354, 19996, 32553, 26215, 7382, 342, 1, 6, 56, 455, 2953
Offset: 1
Examples
The array A(n, k) begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 1, 2, 3, 6, 11, 22, 43, 86, 171, 342 2, 4, 11, 31, 92, 274, 821, 2461, 7382, 22144 2, 7, 26, 103, 410, 1639, 6554, 26215, 104858, 419431 3, 11, 53, 261, 1303, 6511, 32553, 162761, 813803, 4069011 3, 16, 93, 556, 3333, 19996, 119973, 719836, 4319013, 25914076 4, 22, 151, 1051, 7354, 51472, 360301, 2522101, 17654704, 123582922 4, 29, 228, 1821, 14564, 116509, 932068, 7456541, 59652324, 477218589 5, 37, 323, 2953, 26573, 239149, 2152337, 19371025, 174339221, 1569052981 5, 46, 455, 4546, 45455, 454546, 4545455, 45454546, 454545455, 4545454546
Programs
-
PARI
A(n, k) = (n^(k+1)+n*3)\(2*n+2)
Comments