cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A368484 Number of compositions (ordered partitions) of n into parts not greater than n/2.

Original entry on oeis.org

1, 0, 1, 1, 5, 8, 24, 44, 108, 208, 464, 912, 1936, 3840, 7936, 15808, 32192, 64256, 129792, 259328, 521472, 1042432, 2091008, 4180992, 8375296, 16748544, 33525760, 67047424, 134156288, 268304384, 536739840, 1073463296, 2147205120, 4294377472, 8589344768
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 26 2023

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1 - 2 x - 3 x^2 + 7 x^3 + 3 x^4 - 6 x^5)/((1 - 2 x) (1 - 2 x^2)^2), {x, 0, 34}], x]
    Join[{1}, LinearRecurrence[{2, 4, -8, -4, 8}, {0, 1, 1, 5, 8}, 34]]

Formula

G.f.: (1 - 2*x - 3*x^2 + 7*x^3 + 3*x^4 - 6*x^5) / ((1 - 2*x) * (1 - 2*x^2)^2).
a(n) = [x^n] 1 / (1 - Sum_{1 <= j <= n/2} x^j).