A368488
a(n) = Sum_{k=0..n} n^k * binomial(k+n-1,k).
Original entry on oeis.org
1, 2, 17, 334, 10417, 442276, 23690809, 1530206742, 115636017473, 10004657077468, 974950612575601, 105653682110368492, 12602144701834193521, 1640558582759557298696, 231448351542446473323113, 35173958220088874039434726, 5728588740444710703061240065
Offset: 0
A368506
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) = Sum_{j=0..n} k^(n-j) * binomial(j+k-1,j).
Original entry on oeis.org
1, 1, 0, 1, 2, 0, 1, 4, 3, 0, 1, 6, 11, 4, 0, 1, 8, 24, 26, 5, 0, 1, 10, 42, 82, 57, 6, 0, 1, 12, 65, 188, 261, 120, 7, 0, 1, 14, 93, 360, 787, 804, 247, 8, 0, 1, 16, 126, 614, 1870, 3204, 2440, 502, 9, 0, 1, 18, 164, 966, 3810, 9476, 12900, 7356, 1013, 10, 0
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, 12, ...
0, 3, 11, 24, 42, 65, 93, ...
0, 4, 26, 82, 188, 360, 614, ...
0, 5, 57, 261, 787, 1870, 3810, ...
0, 6, 120, 804, 3204, 9476, 23112, ...
0, 7, 247, 2440, 12900, 47590, 139134, ...
-
T(n, k) = sum(j=0, n, k^(n-j)*binomial(j+k-1, j));
Showing 1-2 of 2 results.