A368546 Alternative version of the Markov tree A327345.
5, 13, 29, 34, 194, 433, 169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, 233, 9077, 135137, 51641, 294685, 4400489, 1686049, 43261, 96557, 8399329, 48928105, 3276509, 1278818, 7453378, 499393, 5741, 610, 62210, 2423525, 925765, 13782649, 537169541
Offset: 0
Examples
The initial levels of the tree are as follows. (See p. 47 of Aigner's book.) (1,5,2) (1,13,5) (5,29,2) (1,34,13) (13,194,5) (5,433,29) (29,169,2) (1, (34, (13, (194, (5, (433, (29, (169, 89, 1325, 7561, 2897, 6466, 37666, 14701, 985, ,34) 13) 194) 5) 433) 29) 169) 2)
References
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings. Springer, 2013. x+257 pp. ISBN: 978-3-319-00887-5; 978-3-319-00888-2 MR3098784.
Links
- John Tyler Rascoe, Rows n = 0..10, flattened
- Martin Aigner, Markov's theorem and 100 years of the uniqueness conjecture. A mathematical journey from irrational numbers to perfect matchings, [archive.org copy of the book].
- Robert A. Gore, Patterns Within the Markov Tree, arXiv:2506.04299 [math.GM], 2025.
Crossrefs
Programs
-
Python
def Mtree(x): return(x[0],(3*x[0]*x[1])-x[2],x[1]), (x[1],(3*x[1]*x[2])-x[0],x[2]) def A368546_rowlist(maxrow): A,B = [[(1,5,2)]],[] for n in range(maxrow+1): A.append([]) for j in A[n]: B.append(max(j)) for k in Mtree(j): A[n+1].append(k) return(B) # John Tyler Rascoe, Feb 09 2024
-
SageMath
def stripUpToFirst1(w): x = w while x % 2 == 0: x = x // 2 return(x // 2) def stripUpToFirst0(w): x = w while x % 2 == 1: x = x // 2 if x == 0: return(None) else: return(x // 2) @CachedFunction def markovNumber(w): if w == None: return(2) elif w == 0: return(1) elif w == 1: return(5) elif w % 2 == 0: return(3*markovNumber(stripUpToFirst1(w))*markovNumber(w//2) - markovNumber(stripUpToFirst0(w//2))) else: return(3*markovNumber(stripUpToFirst0(w))*markovNumber(w//2) - markovNumber(stripUpToFirst1(w//2))) [markovNumber(w) for w in range(1,38)]
Comments