A368548 Number of palindromic partitions of n.
1, 2, 2, 2, 4, 2, 4, 4, 6, 2, 10, 2, 8, 10, 10, 2, 18, 2, 20, 16, 12, 2, 36, 12, 14, 24, 36, 2, 60, 2, 38, 34, 18, 46, 104, 2, 20, 46, 108, 2, 122, 2, 94, 148, 24, 2, 212, 58, 116, 76, 140, 2, 232, 164, 270, 94, 30, 2, 588, 2, 32, 372, 274, 280, 420, 2, 276
Offset: 1
Keywords
Examples
For n=5, the palindromic partitions (as defined in Hemmer and Westrem) are [5], [2, 3], [1, 2, 2], [1, 1, 1, 1, 1]. - _Chai Wah Wu_, Feb 07 2024
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
- David J. Hemmer and Karlee J. Westrem, Palindrome Partitions and the Calkin-Wilf Tree, arXiv:2402.02250 [math.CO], 2024. See Table 3.1 p. 5.
- Chai Wah Wu, Proofs of formulas for A368548
- Chai Wah Wu, Proofs of formulas for A368548 and A375783
Crossrefs
Cf. A068499 (a(n)=2, n>1).
Programs
-
Python
from itertools import count from math import comb from collections import Counter from sympy.utilities.iterables import partitions from sympy import isprime def A368548(n): if n == 3 or (n>1 and isprime(n+1)): return 2 c = 0 for p in partitions(n): s, a = '', 1 for d in sorted(Counter(p).elements()): s += '1'*(d-a)+'0' a = d if s[:-1] == s[-2::-1]: c += 1 return c # Chai Wah Wu, Feb 06 2024
-
Python
from math import comb from sympy import divisors def A368548(n): # faster program using formula x = sum(comb(d-2+((n+1)//d>>1),d-1) for d in divisors(n+1>>1,generator=True)) if n&1 else 0 y = sum(comb((d-5>>1)+(n+1)//d,d-3>>1) for d in divisors((n+1)>>(~(n+1)&n).bit_length(),generator=True) if d>=3)<<1 return x+y # Chai Wah Wu, Feb 08 2024
Formula
From Chai Wah Wu, Feb 08 2024: (Start)
Let x = 0 if n is even and x = Sum_{d|(n+1)/2} binomial(d-2+(n+1)/2d,d-1) if n is odd.
Let y = 2*Sum_{d|n+1, d>=3, and d is odd} binomial((d-5)/2+(n+1)/d,(d-3)/2).
Then a(n) = x+y.
a(n) = 2 if n>1 and n+1 is prime.
a(n) = (n+3)/2 if n>3 is odd and (n+1)/2 is prime.
a(2^n-1) = Sum_{i=0..n-1} binomial(2^i+2^(n-i-1)-2,2^i-1).
(End)
Extensions
a(41)-a(67) from Chai Wah Wu, Feb 06 2024
Comments