A368551 Decimal expansion of 6*gamma/Pi^2 - 72*zeta'(2)/Pi^4.
1, 0, 4, 3, 8, 9, 4, 5, 1, 5, 7, 1, 1, 9, 3, 8, 2, 9, 7, 4, 0, 4, 5, 6, 3, 4, 3, 8, 5, 0, 9, 0, 0, 2, 4, 9, 3, 5, 2, 5, 5, 7, 5, 9, 6, 2, 7, 3, 4, 1, 4, 5, 8, 9, 5, 0, 3, 7, 6, 9, 0, 6, 8, 0, 5, 2, 5, 5, 8, 2, 6, 3, 3, 7, 3, 4, 0, 7, 0, 6, 0, 3, 1, 6, 4, 1, 5, 8, 8, 6, 2, 5, 5, 8, 7, 8, 0, 3, 5, 8, 0, 6, 5, 6, 6
Offset: 1
Examples
1.0438945157119382974...
Links
- Artur Kawalec, On the series expansion of a square-free zeta series, arXiv:2312.16811 [math.NT], 2023.
- Marek Wolf, Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formulas (26) and (27).
Programs
-
Mathematica
RealDigits[6 EulerGamma/Pi^2 - 72 Zeta'[2]/Pi^4, 10, 105][[1]]
Formula
Equals (6/Pi^2)*(24*Glaisher - gamma - 2*log(2*Pi)) where Glaisher is A074962.
Equals lim_{x->oo} {(Sum_{n=1..x} abs(mu(n))/n) - 6*log(x)/Pi^2}.
Comments