A368547 Decimal expansion of the Wolf-Kawalec constant of index 1.
2, 3, 6, 1, 5, 2, 8, 8, 6, 4, 7, 7, 1, 2, 2, 9, 7, 4, 8, 6, 0, 5, 7, 8, 2, 8, 6, 0, 6, 0, 3, 2, 6, 9, 6, 0, 1, 5, 3, 2, 2, 6, 2, 9, 7, 9, 2, 3, 3, 1, 0, 9, 7, 6, 4, 0, 7, 3, 4, 8, 4, 0, 1, 7, 0, 8, 3, 9, 1, 1, 5, 6, 4, 4, 0, 4, 1, 3, 1, 6, 5, 7, 9, 5, 2, 9, 2, 8, 6, 6, 6, 0, 5, 5, 5, 1, 3, 0, 8, 4, 0, 4, 1, 1, 8
Offset: 0
Examples
0.23615288647712297486...
Links
- Artur Kawalec, On the series expansion of a square-free zeta series, arXiv:2312.16811 [math.NT], 2023.
- Marek Wolf, Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formula (20).
Programs
-
Mathematica
RealDigits[Limit[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x -> 1], 10, 105][[1]]
Formula
Equals -(864*(zeta'(2))^2 - 72*Pi^2*(gamma*zeta'(2) + zeta''(2)) - 6*Pi^4*gamma_1)/Pi^6 where gamma_1 is A082633 negated.
Equals -(6*Pi^2*(2*(gamma + log(2) - 12*log(Glaisher) + log(Pi))*(gamma + 2*log(2) - 24*log(Glaisher) + 2*log(Pi)) - gamma_1) - 72*zeta''(2))/Pi^4 where Glaisher is the Glaisher-Kinkelin constant A (see A074962).
Comments