cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A368547 Decimal expansion of the Wolf-Kawalec constant of index 1.

Original entry on oeis.org

2, 3, 6, 1, 5, 2, 8, 8, 6, 4, 7, 7, 1, 2, 2, 9, 7, 4, 8, 6, 0, 5, 7, 8, 2, 8, 6, 0, 6, 0, 3, 2, 6, 9, 6, 0, 1, 5, 3, 2, 2, 6, 2, 9, 7, 9, 2, 3, 3, 1, 0, 9, 7, 6, 4, 0, 7, 3, 4, 8, 4, 0, 1, 7, 0, 8, 3, 9, 1, 1, 5, 6, 4, 4, 0, 4, 1, 3, 1, 6, 5, 7, 9, 5, 2, 9, 2, 8, 6, 6, 6, 0, 5, 5, 5, 1, 3, 0, 8, 4, 0, 4, 1, 1, 8
Offset: 0

Views

Author

Artur Jasinski, Dec 30 2023

Keywords

Comments

For the Wolf-Kawalec constant of index 0 see A368551.
For the Wolf-Kawalec constant of index 2 see A368568.

Examples

			0.23615288647712297486...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Limit[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x -> 1],
      10, 105][[1]]

Formula

Equals -(864*(zeta'(2))^2 - 72*Pi^2*(gamma*zeta'(2) + zeta''(2)) - 6*Pi^4*gamma_1)/Pi^6 where gamma_1 is A082633 negated.
Equals -(6*Pi^2*(2*(gamma + log(2) - 12*log(Glaisher) + log(Pi))*(gamma + 2*log(2) - 24*log(Glaisher) + 2*log(Pi)) - gamma_1) - 72*zeta''(2))/Pi^4 where Glaisher is the Glaisher-Kinkelin constant A (see A074962).

A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.

Original entry on oeis.org

3, 1, 9, 3, 8, 4, 1, 2, 0, 4, 0, 8, 0, 1, 4, 2, 4, 9, 2, 4, 9, 4, 6, 5, 2, 0, 7, 0, 7, 4, 5, 7, 2, 0, 1, 5, 2, 8, 1, 6, 1, 4, 2, 9, 2, 0, 2, 4, 7, 8, 3, 7, 2, 3, 8, 7, 0, 0, 2, 3, 0, 4, 9, 0, 5, 6, 0, 1, 4, 9, 0, 5, 6, 8, 4, 2, 6, 7, 7, 1, 3, 4, 1, 4, 6, 9, 7, 4, 3, 2, 4, 1, 1, 1, 4, 4, 5, 1, 9, 0, 6, 0, 2, 6, 5
Offset: 0

Views

Author

Artur Jasinski, Dec 30 2023

Keywords

Comments

For the Wolf-Kawalec constant of index 0 see A368551.
For the Wolf-Kawalec constant of index 1 see A368547.

Examples

			0.3193841204080142492494652...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[Limit[D[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x], x -> 1],10,105][[1]]

Formula

Equals 6*(Pi^6*gamma_2 - 3456*(zeta'(2))^3 + 288*Pi^2*zeta'(2)*(gamma*zeta'(2) + 2*zeta''(2)) + 8*Pi^4*(3*gamma_1*zeta(2) - 3*gamma*zeta''(2) - 2*zeta'''(2)))/Pi^8 where gamma_2 is A086279.
Showing 1-2 of 2 results.