A368557 Number of compositions of n such that the set of absolute differences is a subset of the set of parts.
1, 1, 1, 3, 2, 2, 11, 10, 13, 27, 58, 87, 157, 253, 438, 850, 1462, 2474, 4472, 7716, 13544, 24115, 42360, 74013, 131038, 229009, 401946, 707293, 1242059, 2177682, 3828831, 6716062, 11777179, 20678592, 36267148, 63586772, 111556751, 195610763, 342949281
Offset: 0
Keywords
Examples
For n=12, composition [2,1,2,4,3] of 12 has the set of absolute differences {1,2}, which is a subset of the set of parts {1,2,3,4}, so it counts towards a(12) = 157. a(3) = 3 compositions: [3], [2,1], [1,2]. a(6) = 11 compositions: [6], [4,2], [2,4], [3,2,1], [3,1,2], [2,3,1], [2,1,3], [1,3,2], [1,2,3], [2,1,2,1], [1,2,1,2].
Links
- John Tyler Rascoe, Python program
Programs
-
Mathematica
g[0] = {{}}; g[n_Integer] := g[n] = Flatten[ParallelTable[Append[#, i] & /@ g[n - i], {i, 1, n}], 1]; isC[p_List] := Module[{d}, d = Abs[Differences[p]]; Union[d] === Union[Select[d, MemberQ[p, #] &]]]; a[n_Integer] := a[n] = Count[g[n], p_ /; isC[p]]; Monitor[Table[a[n], {n, 0, 19}], {n, Table[a[m], {m, 0, n - 1}]}] (* Robert P. P. McKone, Jan 02 2024 *)
Extensions
a(24)-a(38) from Alois P. Heinz, Dec 30 2023