A368568 Decimal expansion of the Wolf-Kawalec constant of index 2.
3, 1, 9, 3, 8, 4, 1, 2, 0, 4, 0, 8, 0, 1, 4, 2, 4, 9, 2, 4, 9, 4, 6, 5, 2, 0, 7, 0, 7, 4, 5, 7, 2, 0, 1, 5, 2, 8, 1, 6, 1, 4, 2, 9, 2, 0, 2, 4, 7, 8, 3, 7, 2, 3, 8, 7, 0, 0, 2, 3, 0, 4, 9, 0, 5, 6, 0, 1, 4, 9, 0, 5, 6, 8, 4, 2, 6, 7, 7, 1, 3, 4, 1, 4, 6, 9, 7, 4, 3, 2, 4, 1, 1, 1, 4, 4, 5, 1, 9, 0, 6, 0, 2, 6, 5
Offset: 0
Examples
0.3193841204080142492494652...
Links
- Artur Kawalec, On the series expansion of a square-free zeta series, arXiv:2312.16811 [math.NT], 2023 see Table 1.
- Marek Wolf, Numerical Determination of a Certain Mathematical Constant Related to the Mobius Function, Computational Methods in Science and Technology, Volume 29 (1-4) 2023, 17-20 see formula (20).
Programs
-
Mathematica
RealDigits[Limit[D[D[Zeta[x]/Zeta[2 x] - 6/(Pi^2 (x - 1)), x], x], x -> 1],10,105][[1]]
Formula
Equals 6*(Pi^6*gamma_2 - 3456*(zeta'(2))^3 + 288*Pi^2*zeta'(2)*(gamma*zeta'(2) + 2*zeta''(2)) + 8*Pi^4*(3*gamma_1*zeta(2) - 3*gamma*zeta''(2) - 2*zeta'''(2)))/Pi^8 where gamma_2 is A086279.
Comments