A368598 Number of non-isomorphic n-element sets of singletons or pairs of elements of {1..n}, or unlabeled loop-graphs with n edges and up to n vertices.
1, 1, 2, 6, 17, 52, 173, 585, 2064, 7520, 28265, 109501, 437394, 1799843, 7629463, 33302834, 149633151, 691702799, 3287804961, 16058229900, 80533510224, 414384339438, 2185878202630, 11811050484851, 65318772618624, 369428031895444, 2135166786135671, 12601624505404858
Offset: 0
Keywords
Examples
Non-isomorphic representatives of the a(0) = 1 through a(4) = 17 set-systems: {} {{1}} {{1},{2}} {{1},{2},{3}} {{1},{2},{3},{4}} {{1},{1,2}} {{1},{2},{1,2}} {{1},{2},{3},{1,2}} {{1},{2},{1,3}} {{1},{2},{3},{1,4}} {{1},{1,2},{1,3}} {{1},{2},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{2},{1,2},{3,4}} {{1,2},{1,3},{2,3}} {{1},{2},{1,3},{1,4}} {{1},{2},{1,3},{2,3}} {{1},{2},{1,3},{2,4}} {{1},{3},{1,2},{2,4}} {{1},{1,2},{1,3},{1,4}} {{1},{1,2},{1,3},{2,3}} {{1},{1,2},{1,3},{2,4}} {{1},{1,2},{2,3},{3,4}} {{2},{1,2},{1,3},{1,4}} {{4},{1,2},{1,3},{2,3}} {{1,2},{1,3},{1,4},{2,3}} {{1,2},{1,3},{2,4},{3,4}}
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Eric Weisstein's World of Mathematics, Graph Loop.
Crossrefs
The labeled version is A014068.
The covering case is A368599.
Row sums of A368836.
A000085 counts set partitions into singletons or pairs.
A001515 counts length-n set partitions into singletons or pairs.
A100861 counts set partitions into singletons or pairs by number of pairs.
A111924 counts set partitions into singletons or pairs by length.
Programs
-
Mathematica
brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{(Union@@m)[[i]],p[[i]]}, {i,Length[p]}])], {p,Permutations[Range[Length[Union@@m]]]}]]]; Table[Length[Union[brute /@ Subsets[Subsets[Range[n],{1,2}],{n}]]],{n,0,5}]
-
PARI
a(n) = polcoef(G(n, O(x*x^n)), n) \\ G defined in A070166. - Andrew Howroyd, Jan 09 2024
Formula
a(n) = A070166(n, n). - Andrew Howroyd, Jan 09 2024
Extensions
Terms a(7) and beyond from Andrew Howroyd, Jan 09 2024
Comments