A368601 Number of ways to choose a set of n nonempty subsets of {1..n} such that it is possible to choose a different element from each.
1, 1, 3, 32, 1201, 151286, 62453670, 84707326890, 384641855115279
Offset: 0
Examples
The a(2) = 3 set-systems: {{1},{2}} {{1},{1,2}} {{2},{1,2}} Non-isomorphic representatives of the a(3) = 32 set-systems: {{1},{2},{3}} {{1},{2},{1,3}} {{1},{2},{1,2,3}} {{1},{1,2},{1,3}} {{1},{1,2},{2,3}} {{1},{1,2},{1,2,3}} {{1},{2,3},{1,2,3}} {{1,2},{1,3},{2,3}} {{1,2},{1,3},{1,2,3}}
Links
- Wikipedia, Axiom of choice.
Crossrefs
Programs
-
Mathematica
Table[Length[Select[Subsets[Rest[Subsets[Range[n]]], {n}],Length[Select[Tuples[#], UnsameQ@@#&]]>0&]],{n,0,3}]
-
Python
from itertools import combinations, product, chain def v(c): for elements in product(*c): if len(set(elements)) == len(elements): return True return False def a(n): if n == 0: return 1 subsets = list(chain.from_iterable(combinations(range(1, n + 1), r) for r in range(1, n + 1))) cs = combinations(subsets, n) c = sum(1 for c in cs if v(c)) return c [print(a(n)) for n in range(7)] # Robert P. P. McKone, Jan 02 2024
Extensions
a(6) from Robert P. P. McKone, Jan 02 2024
a(7)-a(8) from Christian Sievers, Jul 25 2024
Comments