A368602 Triangle read by rows where T(n,k) is the number of labeled acyclic digraphs on {1..n} with sinks {1..k}.
1, 0, 1, 0, 1, 1, 0, 5, 3, 1, 0, 79, 33, 7, 1, 0, 3377, 1071, 161, 15, 1, 0, 362431, 92289, 10591, 705, 31, 1, 0, 93473345, 19856703, 1832705, 93375, 2945, 63, 1, 0, 56272471039, 10249747713, 789619327, 32382465, 782719, 12033, 127, 1
Offset: 0
Examples
Triangle begins: 1 0 1 0 1 1 0 5 3 1 0 79 33 7 1 0 3377 1071 161 15 1 ... Row n = 3 counts the following set-systems: {{1},{1,2},{1,3}} {{1},{2},{1,3}} {{1},{2},{3}} {{1},{1,2},{2,3}} {{1},{2},{2,3}} {{1},{1,3},{2,3}} {{1},{2},{1,2,3}} {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}}
Programs
-
Mathematica
Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Union@@Cases[#,{_}]==Range[k] && Length[Select[Tuples[#],UnsameQ@@#&]]==1&]], {n,0,3},{k,0,n}]
Formula
T(n,k) = A361718(n,k)/binomial(n,k).
Extensions
More terms from Alois P. Heinz, Jan 04 2024
Comments