A368620
a(n) is the n-digit numerator of the fraction h/k with h and k coprime positive integers at which abs(h/k-e) is minimal.
Original entry on oeis.org
3, 87, 878, 2721, 49171, 566827, 9242691, 28245729, 848456353
Offset: 1
n fraction approximated value
- ------------------- ------------------
1 3/1 3
2 87/32 2.71875
3 878/323 2.7182662538699...
4 2721/1001 2.7182817182817...
5 49171/18089 2.7182818287356...
6 566827/208524 2.7182818284705...
7 9242691/3400196 2.7182818284593...
8 28245729/10391023 2.7182818284590...
...
-
a[1]=3; a[n_]:=Module[{minim=Infinity},For[i = 10^(n - 1), i <= 10^n - 1, i++, For[j = Floor[i/E], j <= Ceiling[i/E], j++, If[(dist = Abs[i/j - E]) < minim && GCD[i, j] == 1, minim = dist; hmin = i]]]; hmin]; Array[a,9]
A368621
a(n) is the n-digit denominator of the fraction h/k with h and k coprime positive integers at which abs(h/k-e) is minimal.
Original entry on oeis.org
1, 32, 323, 1001, 18089, 208524, 3400196, 10391023, 312129649
Offset: 1
n fraction approximated value
- ------------------- ------------------
1 3/1 3
2 87/32 2.71875
3 878/323 2.7182662538699...
4 2721/1001 2.7182817182817...
5 49171/18089 2.7182818287356...
6 566827/208524 2.7182818284705...
7 9242691/3400196 2.7182818284593...
8 28245729/10391023 2.7182818284590...
...
-
a[1]=1; a[n_]:=Module[{minim=Infinity},For[i = 10^(n - 1), i <= 10^n - 1, i++, For[j = Floor[i/E], j <= Ceiling[i/E], j++, If[(dist = Abs[i/j - E]) < minim && GCD[i, j] == 1, minim = dist; kmin = j]]]; kmin]; Array[a,9]
A368658
a(n) is the number of correct decimal digits of e obtained from the fraction A368618(n)/A368619(n).
Original entry on oeis.org
0, 2, 5, 3, 5, 5, 7, 7, 9, 10, 11, 11, 12, 13
Offset: 1
a(8) = 7 since A368618(8)/A368619(8) = 24988942/9192919 = 2.7182815382143... matches the first 7 digits of e: 2.7182818284590...
Showing 1-3 of 3 results.
Comments