cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A368618 a(n) is the n-digit numerator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-e) is minimal.

Original entry on oeis.org

3, 11, 878, 2552, 38983, 167761, 4407044, 24988942, 882646288, 1385885831, 83034443038, 161356653161, 9051164611509, 24911822811942
Offset: 1

Views

Author

Stefano Spezia, Jan 01 2024

Keywords

Comments

a(3) = 878 corresponds to the numerator of A368617.

Examples

			  n              fraction    approximated value
  -   -------------------    ------------------
  1                   3/1    3
  2                  11/4    2.75
  3               878/323    2.7182662538699...
  4              2552/939    2.7177848775292...
  5           38983/14341    2.7182902168607...
  6          167761/61716    2.7182740294251...
  7       4407044/1621261    2.7182816338640...
  8      24988942/9192919    2.7182815382143...
  9   882646288/324707423    2.7182818299783...
  ...
		

Crossrefs

Cf. A001113, A002113, A070252, A368617, A368619 (denominator), A368658.
Cf. A364844 (similar for Pi), A368620, A368621.

Programs

  • Mathematica
    a[1]=3; a[n_]:=Module[{minim = Infinity}, h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; lh = Length[h]; For[i = 1, i <= lh, i++, k = Select[Range[Floor[Part[h, i]/E], Ceiling[Part[h, i]/E]], PalindromeQ]; lk = Length[k]; For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - E]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; hmin = Part[h, i]]]]; hmin]; Array[a,9]
  • PARI
    \\ See PARI program in Links

Extensions

a(10)-a(14) from David A. Corneth, Jan 03 2024

A368619 a(n) is the n-digit denominator of the fraction h/k with h and k coprime palindrome positive integers at which abs(h/k-e) is minimal.

Original entry on oeis.org

1, 4, 323, 939, 14341, 61716, 1621261, 9192919, 324707423, 509838905, 30546664503, 59359795395, 3329737379233, 9164547454619
Offset: 1

Views

Author

Stefano Spezia, Jan 01 2024

Keywords

Comments

a(3) = 323 corresponds to the denominator of A368617.

Examples

			  n              fraction    approximated value
  -   -------------------    ------------------
  1                   3/1    3
  2                  11/4    2.75
  3               878/323    2.7182662538699...
  4              2552/939    2.7177848775292...
  5           38983/14341    2.7182902168607...
  6          167761/61716    2.7182740294251...
  7       4407044/1621261    2.7182816338640...
  8      24988942/9192919    2.7182815382143...
  9   882646288/324707423    2.7182818299783...
  ...
		

Crossrefs

Cf. A364845 (similar for Pi), A368620, A368621.

Programs

  • Mathematica
    a[1]=1; a[n_]:=Module[{minim = Infinity}, h = Select[Range[10^(n - 1), 10^n - 1], PalindromeQ]; lh = Length[h]; For[i = 1, i <= lh, i++, k = Select[Range[Floor[Part[h, i]/E], Ceiling[Part[h, i]/E]], PalindromeQ]; lk = Length[k]; For[j = 1, j <= lk, j++, If[(dist = Abs[Part[h, i]/Part[k, j] - E]) < minim && GCD[Part[h, i], Part[k, j]] == 1, minim = dist; kmin = Part[k, j]]]]; kmin]; Array[a,9]
  • PARI
    \\ See PARI program in Links

Extensions

a(10)-a(14) from David A. Corneth, Jan 03 2024

A368659 a(n) is the number of correct decimal digits of e obtained from the fraction A368620(n)/A368621(n).

Original entry on oeis.org

0, 4, 5, 7, 10, 11, 13, 14, 18
Offset: 1

Views

Author

Stefano Spezia, Jan 02 2024

Keywords

Examples

			a(8) = 14 since A368620(8)/A368621(8) = 28245729/10391023 = 2.7182818284590... matches the first 14 digits of e: 2.71828182845904523...
		

Crossrefs

Showing 1-3 of 3 results.