cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A368386 a(n) is the numerator of the probability that the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 2, 1, 8, 4, 17, 4, 2, 57, 5, 5, 5, 73, 5, 5, 73, 73, 5, 1, 5, 49321, 28165117, 20, 20, 338, 20, 246038, 63425, 28165117, 63425, 123019, 20, 49321, 20, 149998, 63425, 20, 117209258, 74999, 63425, 10, 20, 63425, 20, 74999, 10, 10, 63425, 149998, 63425, 10, 149998, 5000341, 64770, 5
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

In internal diffusion-limited aggregation on the square lattice, there is one initial cell in the origin. In each subsequent step, a new cell is added by starting a random walk at the origin, adding the first new cell visited. a(n)/A368387(n) is the probability that, when the appropriate number of cells have been added, those cells form the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
   1;
   1;
   2, 1;
   8, 4, 17, 4,  2;
  57, 5,  5, 5, 73, 5, 5, 73, 73, 5, 1, 5;
  ...
There are only one monomino and one free domino, so both of these appear with probability 1, and a(1) = a(2) = 1.
For three squares, the probability for an L (or right) tromino (whose binary code is 7 = A246521(4)) is 2/3, so a(3) = 2. The probability for the straight tromino (whose binary code is 11 = A246521(5)) is 1/3, so a(4) = 1.
		

Crossrefs

Cf. A000105, A246521, A335573, A367671, A367760, A367994, A368387 (denominators), A368388, A368390, A368392, A368393, A368660 (external diffusion-limited aggregation).

Formula

a(n)/A368387(n) = (A368392(n)/A368393(n))*A335573(n+1).

A368387 a(n) is the denominator of the probability that the free polyomino with binary code A246521(n+1) appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 3, 3, 35, 35, 35, 35, 35, 154, 462, 462, 231, 462, 231, 462, 924, 462, 462, 7, 924, 1846572, 492573081, 19019, 19019, 5073, 19019, 1804297, 7379372, 492573081, 7379372, 1804297, 19019, 1846572, 19019, 5534529, 7379372, 19019, 492573081, 5534529, 7379372, 19019, 19019, 7379372, 19019, 5534529, 19019, 19019, 14758744, 5534529, 7379372, 19019, 5534529, 44276232, 1844843, 19019
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

In internal diffusion-limited aggregation on the square lattice, there is one initial cell in the origin. In each subsequent step, a new cell is added by starting a random walk at the origin, adding the first new cell visited. A368386(n)/a(n) is the probability that, when the appropriate number of cells have been added, those cells form the free polyomino with binary code A246521(n+1).
Can be read as an irregular triangle, whose n-th row contains A000105(n) terms, n >= 1.

Examples

			As an irregular triangle:
    1;
    1;
    3,   3;
   35,  35,  35,  35,  35;
  154, 462, 462, 231, 462, 231, 462, 924, 462, 462, 7, 924;
  ...
There are only one monomino and one free domino, so both of these appear with probability 1, and a(1) = a(2) = 1.
For three squares, the probability for an L (or right) tromino (whose binary code is 7 = A246521(4)) is 2/3, so a(3) = 3. The probability for the straight tromino (whose binary code is 11 = A246521(5)) is 1/3, so a(4) = 3.
		

Crossrefs

Cf. A000105, A246521, A335573, A367672, A367761, A367995, A368386 (numerators), A368389, A368391, A368392, A368393, A368660 (external diffusion-limited aggregation).

Formula

A368386(n)/a(n) = (A368392(n)/A368393(n))*A335573(n+1).

A368661 Square array read by antidiagonals; the n-th row is the decimal expansion of the minimum probability that a particular free polyomino with n cells appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 7, 5, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 2, 0, 0, 0, 0, 0, 2, 2, 7, 8, 0, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

The n-th row is the decimal expansion of the minimum of the numbers corresponding to rows A130866(n-1)+1..A130866(n) of A368660. See A368660 for details.

Examples

			Array begins:
  1.00000000000000000000... (1st row of A368660)
  1.00000000000000000000... (2nd row of A368660)
  0.42731251091162151298... (4th row of A368660)
  0.05462942885357382723... (6th row of A368660)
  0.01279646275569121440... (20th row of A368660)
  0.00867204327624784314... (42nd row of A368660)
  ...
The corresponding polyominoes for 1 <= n <= 6 are (all these are unique):
            _             _          _ _
       _   | |   _ _    _| |_      _|  _|
  _   | |  | |  |   |  |_   _|   _|  _|
 |_|  |_|  |_|  |_ _|    |_|    |_ _|
		

Crossrefs

Cf. A130866, A368388 (internal diffusion-limited aggregation), A368660, A368662 (maximum), A368664 (row 3), A368666 (row 4), A368864 (fixed polyominoes).

A368662 Square array read by antidiagonals; the n-th row is the decimal expansion of the maximum probability that a particular free polyomino with n cells appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 7, 4, 0, 0, 0, 2, 2, 1, 0, 0, 0, 6, 6, 5, 0, 0, 0, 0, 8, 4, 7, 6, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

The n-th row is the decimal expansion of the maximum of the numbers corresponding to rows A130866(n-1)+1..A130866(n) of A368660. See A368660 for details.

Examples

			Array begins:
  1.00000000000000000000... (1st row of A368660)
  1.00000000000000000000... (2nd row of A368660)
  0.57268748908837848701... (3rd row of A368660)
  0.42649395750130487018... (5th row of A368660)
  0.15786504558818518196... (14th row of A368660)
  0.06192086165513502549... (36th row of A368660)
  ...
The corresponding polyominoes for 1 <= n <= 6 are (all these are unique):
                    _                   _
        _    _     | |       _         | |
   _   | |  | |_   | |_    _| |_ _    _| |_ _
  |_|  |_|  |_ _|  |_ _|  |_ _ _ _|  |_ _ _ _|
		

Crossrefs

Cf. A130866, A368390 (internal diffusion-limited aggregation), A368660, A368661 (minimum), A368663 (row 3), A368665 (row 4), A368865 (fixed polyominoes).

A368665 Decimal expansion of the probability that the L tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

4, 2, 6, 4, 9, 3, 9, 5, 7, 5, 0, 1, 3, 0, 4, 8, 7, 0, 1, 8, 5, 8, 4, 2, 5, 6, 1, 2, 8, 9, 1, 4, 8, 8, 2, 2, 0, 0, 6, 1, 8, 5, 2, 0, 5, 6, 5, 6, 7, 3, 3, 6, 5, 4, 8, 1, 6, 8, 9, 5, 6, 4, 9, 2, 5, 1, 3, 6, 5, 0, 2, 9, 5, 1, 1, 1, 4, 9, 7, 0, 3, 2, 9, 9, 6, 9, 9, 8, 8, 2, 9, 3, 6, 0, 5, 5, 1, 4, 9, 0
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.426493957501304870185842561289148822006185205656733654816895...
		

Crossrefs

5th row of A368660.
4th row of A368662.

Formula

Equals (4644864 - 9252864*Pi + 7592128*Pi^2 - 3288992*Pi^3 + 794310*Pi^4 - 101490*Pi^5 + 5364*Pi^6)/(19267584 - 39854080*Pi + 33814528*Pi^2 - 15105856*Pi^3 + 3754992*Pi^4 - 493215*Pi^5 + 26775*Pi^6).

A368666 Decimal expansion of the probability that the square tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

0, 5, 4, 6, 2, 9, 4, 2, 8, 8, 5, 3, 5, 7, 3, 8, 2, 7, 2, 3, 9, 9, 1, 1, 0, 2, 2, 1, 3, 9, 5, 1, 1, 9, 3, 7, 6, 9, 0, 2, 2, 9, 7, 0, 8, 2, 6, 8, 2, 4, 6, 9, 0, 6, 3, 5, 9, 2, 8, 2, 0, 4, 0, 1, 6, 8, 3, 3, 0, 0, 4, 1, 9, 0, 8, 2, 8, 8, 6, 6, 1, 3, 6, 9, 8, 6, 6, 2, 2, 1, 5, 6, 7, 5, 4, 6, 7, 1, 3, 5
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.054629428853573827239911022139511937690229708268246906359282...
		

Crossrefs

6th row of A368660.
4th row of A368661.

Formula

Equals (7680 - 10744*Pi + 5572*Pi^2 - 1272*Pi^3 + 108*Pi^4)/(21504 - 32000*Pi + 17368*Pi^2 - 4101*Pi^3 + 357*Pi^4).

A368667 Decimal expansion of the probability that the T tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

2, 0, 4, 3, 0, 0, 9, 3, 0, 9, 4, 7, 2, 1, 0, 6, 2, 1, 1, 5, 2, 7, 4, 5, 0, 7, 4, 6, 1, 4, 7, 5, 7, 7, 0, 6, 8, 3, 4, 9, 5, 3, 5, 2, 4, 7, 0, 5, 6, 3, 7, 9, 1, 1, 2, 0, 4, 2, 3, 8, 1, 2, 9, 5, 7, 4, 2, 7, 2, 6, 9, 8, 6, 2, 9, 8, 8, 1, 5, 5, 9, 9, 0, 6, 1, 1, 2, 4, 8, 7, 8, 5, 9, 8, 2, 3, 1, 1, 0, 7
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.204300930947210621152745074614757706834953524705637911204238...
		

Crossrefs

7th row of A368660.

Formula

Equals (286720 - 520576*Pi + 365408*Pi^2 - 125052*Pi^3 + 20982*Pi^4 - 1386*Pi^5)/(1204224 - 2114560*Pi + 1452608*Pi^2 - 490176*Pi^3 + 81507*Pi^4 - 5355*Pi^5).

A368668 Decimal expansion of the probability that the skew tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 5, 1, 7, 7, 9, 4, 3, 8, 2, 7, 3, 7, 3, 4, 8, 2, 6, 7, 3, 8, 9, 8, 9, 3, 4, 0, 9, 3, 2, 0, 3, 2, 8, 6, 2, 5, 9, 1, 1, 3, 1, 0, 8, 2, 4, 6, 1, 1, 7, 0, 1, 6, 3, 2, 9, 0, 6, 6, 7, 9, 9, 1, 8, 8, 4, 1, 3, 9, 7, 1, 5, 7, 4, 6, 7, 1, 4, 4, 3, 0, 8, 8, 6, 0, 5, 9, 8, 6, 5, 5, 3, 4, 0, 5, 3, 1, 7, 6, 1
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.151779438273734826738989340932032862591131082461170163290667...
		

Crossrefs

8th row of A368660.

Formula

Equals (3200 - 5560*Pi + 3370*Pi^2 - 867*Pi^3 + 81*Pi^4)/(21504 - 32000*Pi + 17368*Pi^2 - 4101*Pi^3 + 357*Pi^4).

A368669 Decimal expansion of the probability that the straight tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 6, 2, 7, 9, 6, 2, 4, 4, 4, 2, 4, 1, 7, 5, 8, 5, 4, 6, 8, 2, 5, 1, 2, 0, 0, 1, 0, 2, 4, 5, 4, 8, 6, 7, 0, 8, 7, 7, 5, 0, 0, 4, 7, 8, 9, 0, 8, 2, 1, 1, 3, 6, 4, 3, 2, 8, 9, 1, 6, 1, 8, 9, 1, 2, 1, 8, 9, 2, 5, 1, 4, 2, 0, 3, 9, 6, 5, 6, 4, 4, 5, 3, 8, 2, 6, 1, 5, 4, 2, 1, 0, 2, 5, 2, 1, 8, 5, 0, 4
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.162796244424175854682512001024548670877500478908211364328916...
		

Crossrefs

9th row of A368660.

Programs

  • Mathematica
    First[RealDigits[2*(Pi - 4)^2*(3*Pi - 10)/((5*Pi - 16)*(7*Pi - 24)*(15*Pi - 56)), 10, 100]] (* Paolo Xausa, Nov 12 2024 *)

Formula

Equals (320 - 256*Pi + 68*Pi^2 - 6*Pi^3)/(21504 - 18752*Pi + 5440*Pi^2 - 525*Pi^3).

A368863 Square array read by antidiagonals; the n-th row is the decimal expansion of the probability that a particular one of the A335573(n+1) fixed polyominoes corresponding to the free polyomino with binary code A246521(n+1) appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 0, 0, 4, 2, 0, 0, 0, 3, 1, 0, 0, 0, 0, 1, 3, 5, 0, 0, 0, 0, 7, 6, 3, 5, 0, 0, 0, 0, 1, 5, 3, 4, 5, 0, 0, 0, 0, 8, 6, 1, 6, 1, 3, 0, 0, 0, 0, 7, 2, 1, 2, 0, 7, 8, 0, 0, 0, 0, 2, 5, 7, 9, 7, 9, 1, 1, 0, 0, 0, 0, 2, 5, 4, 4, 5, 4, 3, 6, 1, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2024

Keywords

Comments

The n-th row is the decimal expansion of the number on the n-th row of A368660 divided by A335573(n+1). See A368660 for details.
Rows A130866(k-1)+1 to A130866(k) correspond to k-celled polyominoes, k >= 2.

Examples

			Array begins:
  1.00000000000000000000... (monomino)
  0.50000000000000000000... (domino)
  0.14317187227209462175... (L tromino)
  0.21365625545581075649... (I tromino)
  0.05331174468766310877... (L tetromino)
  0.05462942885357382723... (square tetromino)
  0.05107523273680265528... (T tetromino)
  0.03794485956843370668... (S tetromino)
  0.08139812221208792734... (I tetromino)
  0.01652391644265825925... (P pentomino)
  0.01709341200261444870... (V pentomino)
  0.00933365290110550590... (W pentomino)
  0.01825698429438352158... (L pentomino)
  0.01973313069852314774... (Y pentomino)
  0.01316184592639931744... (N pentomino)
  0.01069856796007681265... (U pentomino)
  0.02067501830899727807... (T pentomino)
  0.01358243200363682514... (F pentomino)
  0.01232428737930631004... (Z pentomino)
  0.01279646275569121440... (X pentomino)
  0.02831865405554939733... (I pentomino)
  ...
		

Crossrefs

Cf. A000105, A001168, A130866, A246521, A335573, A368660 (free polyominoes), A368864, A368865.
Corresponding sequences for internal diffusion-limited aggregation: A368392, A368393.
Showing 1-10 of 12 results. Next