cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A368660 Square array read by antidiagonals; the n-th row is the decimal expansion of the probability that the free polyomino with binary code A246521(n+1) appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 5, 0, 0, 0, 7, 4, 0, 0, 0, 2, 2, 4, 0, 0, 0, 6, 7, 2, 0, 0, 0, 0, 8, 3, 6, 5, 2, 0, 0, 0, 7, 1, 4, 4, 0, 1, 0, 0, 0, 4, 2, 9, 6, 4, 5, 1, 0, 0, 0, 8, 5, 3, 2, 3, 1, 6, 1, 0, 0, 0, 9, 1, 9, 9, 0, 7, 2, 3, 0, 0, 0, 0, 0, 0, 5, 4, 0, 7, 7, 2, 6, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 02 2024

Keywords

Comments

Given the current set of cells in a diffusion-limited aggregation process on the square lattice, with new cells coming in from infinity, the probability that the next cell appears in a given position can be found by "Spitzer's recipe" (see Spitzer (1976) and Wolf (1991)). These probabilities can then be aggregated to probabilities for each polyomino to appear.
Each row corresponds to a number in the field Q(Pi), i.e., a number of the form (Sum_{i=0..j} p_i*Pi^i)/(Sum_{i=0..k} q_i*Pi^i), with p_i and q_i integers.
Rows A130866(k-1)+1 to A130866(k) correspond to k-celled polyominoes, k >= 2. The sum of the numbers on those rows is 1.

Examples

			Array begins:
  1.00000000000000000000... (monomino)
  1.00000000000000000000... (domino)
  0.57268748908837848701... (L tromino)
  0.42731251091162151298... (I tromino)
  0.42649395750130487018... (L tetromino)
  0.05462942885357382723... (square tetromino)
  0.20430093094721062115... (T tetromino)
  0.15177943827373482673... (S tetromino)
  0.16279624442417585468... (I tetromino)
  0.13219133154126607406... (P pentomino)
  0.06837364801045779482... (V pentomino)
  0.03733461160442202363... (W pentomino)
  0.14605587435506817264... (L pentomino)
  0.15786504558818518196... (Y pentomino)
  0.10529476741119453953... (N pentomino)
  0.04279427184030725060... (U pentomino)
  0.08270007323598911231... (T pentomino)
  0.10865945602909460112... (F pentomino)
  0.04929714951722524019... (Z pentomino)
  0.01279646275569121440... (X pentomino)
  0.05663730811109879467... (I pentomino)
  ...
		

References

  • Frank Spitzer, Principles of Random Walk, 2nd edition, Springer, 1976. See Chapter III.

Crossrefs

Cf. A000105, A130866, A246521, A368661, A368662, A368863 (fixed polyominoes).
Corresponding sequences for internal diffusion-limited aggregation: A368386, A368387.

A368661 Square array read by antidiagonals; the n-th row is the decimal expansion of the minimum probability that a particular free polyomino with n cells appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 1, 0, 0, 0, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 0, 7, 5, 0, 0, 0, 0, 3, 4, 1, 0, 0, 0, 0, 1, 6, 2, 0, 0, 0, 0, 0, 2, 2, 7, 8, 0, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

The n-th row is the decimal expansion of the minimum of the numbers corresponding to rows A130866(n-1)+1..A130866(n) of A368660. See A368660 for details.

Examples

			Array begins:
  1.00000000000000000000... (1st row of A368660)
  1.00000000000000000000... (2nd row of A368660)
  0.42731251091162151298... (4th row of A368660)
  0.05462942885357382723... (6th row of A368660)
  0.01279646275569121440... (20th row of A368660)
  0.00867204327624784314... (42nd row of A368660)
  ...
The corresponding polyominoes for 1 <= n <= 6 are (all these are unique):
            _             _          _ _
       _   | |   _ _    _| |_      _|  _|
  _   | |  | |  |   |  |_   _|   _|  _|
 |_|  |_|  |_|  |_ _|    |_|    |_ _|
		

Crossrefs

Cf. A130866, A368388 (internal diffusion-limited aggregation), A368660, A368662 (maximum), A368664 (row 3), A368666 (row 4), A368864 (fixed polyominoes).

A368665 Decimal expansion of the probability that the L tetromino appears when the 4th cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

4, 2, 6, 4, 9, 3, 9, 5, 7, 5, 0, 1, 3, 0, 4, 8, 7, 0, 1, 8, 5, 8, 4, 2, 5, 6, 1, 2, 8, 9, 1, 4, 8, 8, 2, 2, 0, 0, 6, 1, 8, 5, 2, 0, 5, 6, 5, 6, 7, 3, 3, 6, 5, 4, 8, 1, 6, 8, 9, 5, 6, 4, 9, 2, 5, 1, 3, 6, 5, 0, 2, 9, 5, 1, 1, 1, 4, 9, 7, 0, 3, 2, 9, 9, 6, 9, 9, 8, 8, 2, 9, 3, 6, 0, 5, 5, 1, 4, 9, 0
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.426493957501304870185842561289148822006185205656733654816895...
		

Crossrefs

5th row of A368660.
4th row of A368662.

Formula

Equals (4644864 - 9252864*Pi + 7592128*Pi^2 - 3288992*Pi^3 + 794310*Pi^4 - 101490*Pi^5 + 5364*Pi^6)/(19267584 - 39854080*Pi + 33814528*Pi^2 - 15105856*Pi^3 + 3754992*Pi^4 - 493215*Pi^5 + 26775*Pi^6).

A368390 Numerator of the greatest probability that a particular free polyomino with n cells appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 2, 17, 57, 117209258, 363356390591, 292511604691740220504677006975130493521391, 2806200956345391684353279299766025388803856326541039774177, 8401384904285310565650785385525173372621364715976628525884130138767724737789789512541
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

a(n) is the numerator of the maximum of A368386/A368387 over the n-th row. See A368386 for details.

Examples

			For 1 <= n <= 13, the following are the unique polyominoes that have the maximum probabilities for their respective sizes:
                    _      _        _
        _    _     | |_   | |_    _| |_
   _   | |  | |_   |  _|  |   |  |_    |
  |_|  |_|  |_ _|  |_|    |_ _|    |_ _|
     _          _          _ _      _ _ _
   _| |_ _    _| |_ _    _|   |_   |     |_
  |_     _|  |      _|  |      _|  |      _|
    |_ _|    |_ _ _|    |_ _ _|    |_ _ _|
                           _
              _ _ _      _| |_
   _ _ _     |     |_   |     |_
  |     |_   |       |  |       |
  |       |  |_   _ _|  |_   _ _|
  |_ _ _ _|    |_|        |_|
		

Crossrefs

Cf. A367673, A367762, A367998, A368386, A368387, A368388, A368391 (denominators), A368394, A368662 (external diffusion-limited aggregation).

A368391 Denominator of the greatest probability that a particular free polyomino with n cells appears in internal diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 1, 3, 35, 154, 492573081, 2263639868336, 2851008421256134796827810712799257125795200, 23733667150026775615685852367392733768076432660227006271200, 153969151852607771689295889934692329991676103836044675654575411018653133479482476448000
Offset: 1

Views

Author

Pontus von Brömssen, Dec 22 2023

Keywords

Comments

a(n) is the denominator of the maximum of A368386/A368387 over the n-th row. See A368386 for details.

Examples

			See A368390.
		

Crossrefs

Cf. A367674, A367763, A367999, A368386, A368387, A368389, A368390 (numerators), A368395, A368662 (external diffusion-limited aggregation).

A368865 Square array read by antidiagonals; the n-th row is the decimal expansion of the maximum probability that a particular fixed polyomino with n cells appears in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

1, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 3, 8, 0, 0, 0, 0, 6, 1, 2, 0, 0, 0, 0, 5, 3, 8, 0, 0, 0, 0, 0, 6, 9, 3, 9, 0, 0, 0
Offset: 1

Views

Author

Pontus von Brömssen, Jan 08 2024

Keywords

Comments

The n-th row is the decimal expansion of the maximum of the numbers corresponding to rows A130866(n-1)+1..A130866(n) of A368863.
It seems that the straight polyomino is the unique n-celled polyomino that has the maximum probability of appearing in a fixed orientation. If true, the n-th row here equals the A130866(n)-th row of A368863.

Examples

			Array begins:
  1.00000000000000000000... (1st row of A368863)
  0.50000000000000000000... (2nd row of A368863)
  0.21365625545581075649... (4th row of A368863)
  0.08139812221208792734... (9th row of A368863)
  0.02831865405554939733... (21st row of A368863)
  0.00913650301189504691... (56th row of A368863)
  ...
		

Crossrefs

Cf. A130866, A368394 (internal diffusion-limited aggregation), A368662 (free polyominoes), A368863, A368864 (minimum).

A368663 Decimal expansion of the probability that the L tromino appears when the 3rd cell is added in diffusion-limited aggregation on the square lattice.

Original entry on oeis.org

5, 7, 2, 6, 8, 7, 4, 8, 9, 0, 8, 8, 3, 7, 8, 4, 8, 7, 0, 1, 8, 2, 4, 5, 8, 6, 5, 0, 6, 7, 9, 2, 5, 7, 1, 3, 0, 9, 8, 2, 6, 9, 0, 9, 5, 3, 6, 2, 3, 1, 6, 6, 8, 6, 5, 5, 4, 4, 7, 2, 4, 1, 1, 4, 1, 8, 3, 4, 8, 8, 5, 1, 7, 3, 3, 1, 0, 5, 8, 2, 3, 6, 2, 9, 4, 3, 0, 6, 8, 2, 2, 7, 7, 8, 5, 5, 3, 2, 4, 8
Offset: 0

Views

Author

Pontus von Brömssen, Jan 04 2024

Keywords

Comments

See A368660 for details.

Examples

			0.572687489088378487018245865067925713098269095362316686554472...
		

Crossrefs

3rd row of A368660.
3rd row of A368662.
Cf. A368664.

Programs

  • Mathematica
    First[RealDigits[(20 - 6*Pi)/(24 - 7*Pi), 10, 100]] (* Paolo Xausa, Nov 12 2024 *)

Formula

Equals (20-6*Pi)/(24-7*Pi) = 1 - A368664.
Showing 1-7 of 7 results.